JUMO dTRANS pH 02

Transmitter/controller for pH, redox, NH₃, temperature and standard signals Type 202551

B 202551.0 Operating Manual

V1.00/EN/00532736

WARNING:

A sudden malfunction of the device, or one of the sensors connected to it, could potentially result in dangerous, overdosing! Suitable preventive measures must be in place to prevent this from happening.

Note:

Please read these Operating Instructions before placing the device in operation. Keep the manual in a place which is accessible to all users at all times.

Resetting the brightness of the LC display:

If the brightness setting has been adjusted so that the display text is no longer legible, the basic setting can be restored as follows:

- * Switch off the voltage supply.
- ★ Switch on the voltage supply and immediately press and hold the ▼ and ▲ keys simultaneously.

To set the operator language:

- ★ Press the ExiT key for longer than 3 seconds.
- * Select the appropriate language with the $\mathbf{\nabla}$ and $\mathbf{\Delta}$ keys.
- **★** Briefly press the PGM key.

Reset to factory settings:

To get to the Administrator level, proceed as follows:

- * Press the Rew key for longer than 2 seconds.
- ★ Use the **▼** or **▲** keys to select "ADMINISTR. LEVEL".
- ***** Use the \blacksquare and \blacksquare keys to enter the password 8192.

Confirm the rem key.

WARNING:

Customer-specific settings will be lost!

Content

1 1.1 1.2	Typographical conventions	6
2	Description	7
3 3.1 3.2 3.3 3.4	Device identification Nameplate Order details Accessories (included in delivery) Accessories (optional)	9 9 11
4 4.1 4.2	Assembly General Dimensions	12
5 5.1 5.2 5.3 5.4	Installation Installation instructions Electrical isolation Connection Connecting a pH combination electrode	13 14 15
6	Operation	23
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Controls Display Principle of operation Measuring mode Input/output information User level Administrator level MANUAL mode/Simulation mode HOLD mode	23 24 25 28 29 34 35 37
6.2 6.3 6.4 6.5 6.6 6.7 6.8	Controls Display Principle of operation Measuring mode Input/output information User level Administrator level MANUAL mode/Simulation mode	23 24 25 28 29 34 35 37 40 42

Content

8.4 8.5	2-point calibration	
8.6	pH Antimony measurement chains, ISFET pH combination electroc	
9 9.1	Calibrating a redox measurement chain	
9.2 9.3 9.4	General information Zero-point calibration (one-point offset calibration) 2-point calibration	59
10	Calibrating an ammonia sensor	
10.1 10.2 10.3	Notes General information Zero point (1-point) calibration	63
11 11.1	Calibrating a sensor with a standard signal	
11.2 11.3 11.4 11.5 11.6	Linear operating mode pH operating mode Conductivity operating mode Concentration operating mode Chlorine measurement operating mode, pH-compensated	73 74 80
12 12.1	Calibration logbook	
13 .1 13.2 13.3 13.4 13.5 13.6	Controller	86 86 87 89 89
14 14.1 14.2	Setup program Configurable parameters Documenting the device configuration	93
14.3 15	Special features for "Data logger"	

Content

16	Technical data	
17	Retrofitting optional boards	102
18	Appendix	105
18.1	Glossary	
	Parameters of the User level	
19	Index	126

1 Typographical conventions

1.1 Warning signs

Danger

This symbol is used when there may be **danger to personnel** if the instructions are ignored or not followed correctly!

Caution

This symbol is used when there may be **damage to equipment or data** if the instructions are ignored or not followed correctly!

Read documentation!

This symbol – placed on the device – indicates that the associated **device documentation has to be observed**. This is necessary to recognize the kind of the potential hazards as well as to take the measures to avoid them.

1.2 Reference signs

Note

This symbol is used to draw your **special attention** to a remark.

abc¹

Footnote

Footnotes are remarks that **refer to specific points** in the text. Footnotes consist of two parts:

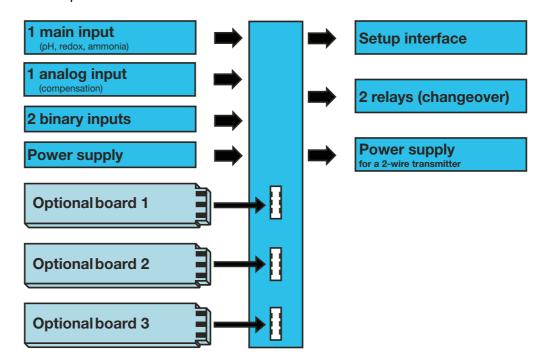
A marker in the text and the footnote text.

The markers in the text are arranged as consecutive superscript numbers.

*

Instruction

This symbol indicates the description of an **action to be performed**. The individual steps are marked by this asterisk.


Example:

★ Briefly press the ▲ key.

Inputs/outputs In addition to the main input (pH/redox) and the secondary input (temperature compensation), the basic device alone has two binary inputs, two relays, one voltage supply for external sensors and a setup interface.

Input signals can be shown as numbers or as a bar graph on the graphic display. Parameters are displayed in plain text for easily comprehensible and reliable operation.

Optional Three further slots can be fitted with extensive additional configurable inputs and outputs and interfaces.

Application

The device is suitable, for example, for displaying, measuring and controlling:

- pH value and/or redox potential.
- Free chlorine, chlorine dioxide, ozone, hydrogen peroxide and peracetic acid, in combination with sensors as per data sheet 202630.
- (Hydrostatic) liquid levels with 2-wire transmitters (level probes) as per data sheet 402090 or data sheet 404390.
- Flow rate in conjunction with transmitters as per data sheet 406010 or 406020.
- Two temperature measuring points.
- Most sensors and transmitters that output standard signals (0 to 10 V or 0(4) to 20 mA).

Because temperature measurement is integrated, temperature compensation takes place quickly and precisely, which is particularly important for many analytical measurements.

2 Description

Key features

- Display: mg/l, pH, mV, µS/cm, etc.
 - Special settings are also possible with the setup program
- Configurable display text (operator level)
- Alarm text with color change
- A choice of display visualizations: large numbers, bar graph or tendency (trend) display
- Four limit controllers
- Integrated calibration routines: with 1, 2 and 3 points
- Math and logic module (optional)
- Calibration logbook
- Three optional slots
- Selectable languages: English, German, French, etc.
- Setup program provides: convenient programming, system documentation
- RS422/485 interface (optional)
- PROFIBUS-DP interface (optional)

3.1 Nameplate

on the transmitter

 JUMO GmbH & Co. KG dTRANS pH 02
 VARTN: 20/00577824

 Typ: 202551/01-8-02-0-00-25/000
 Fulda, Germany

 F-Nr.: 0176455601012510001
 Wax 14VA

 C C C 20..30V
 48..63Hz

The date of manufacture is encoded in the "F No." (serial number): 1251 means year of manufacture 2012, calendar week 51

3.2 Order details

	(1)	Basic type
202551		JUMO dTRANS pH 02 - Transmitter/controller
	(2)	Basic type extension
01		In the panel enclosure
05		In the surface-mounted enclosure
	(3)	Version
8		Standard with factory setting
9		Programming to customer specification
	(4)	Operating language ^a
01		German
02		English
03		French
04		Dutch
05		Russian
06		Italian
07		Hungarian
08		Czech
09		Swedish
10		Polish
13		Portuguese
14		Spanish
16		Rumanian

(!	 Optional slot 1
0	Not used
1	Analog input (universal)
2	Relay (1× changeover)
3	Relay (2× normally open)
4	Analog output
5	2 PhotoMOS [®] relays ^b
6	Solid state relay 1 A
7	Voltage supply output DC \pm 5 V (e.g. for ISFET)
8	Voltage supply output DC 12 V (e.g. for inductive proximity switch)
(6	6) Optional slot 2
0	Not used
1	Analog input (universal)
2	Relay (1× changeover)
4	Analog output
5	2 PhotoMOS [®] relays
6	Solid state relay 1 A
7	Voltage supply output DC \pm 5 V (e.g. for ISFET)
8	Voltage supply output DC 12 V (e.g. for inductive proximity switch)
(7	') Optional slot 3
00	Not used
01	Analog input (universal)
02	Relay (1× changeover)
03	Relay (2× normally open)
04	Analog output
05	2 PhotoMOS [®] relays
06	Solid state relay 1 A
07	Voltage supply output DC \pm 5 V (e.g. for ISFET)
08	Voltage supply output DC 12 V (e.g. for inductive proximity switch)
10	RS485 interface
11	Data logger with interface RS485 ^c
12	PROFIBUS-DP interface
3)	
23	AC 110 to 230 V, +10/-15 %, 48 to 63 Hz
25	AC/DC 20 to 30 V, 48 to 63 Hz
(9	9) Extra codes ^d
000	None

^a Can be changed on the device.
^b PhotoMOS[®] is a registered trademark of Panasonic Corporation.
^c The only way to read files is with the PC setup software!
^d List extra codes in sequence, separated by commas.

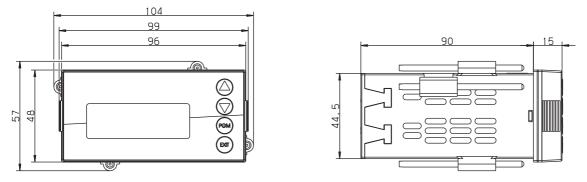
	(1)	((2)		(3)		(4)		(5)		(6)		(7)		(8)		(9)	
Order code		/		-]-[]-[-]-[]-[/		,
Order example	202551	/ (01	-	8	-	01	-	2	-	2	-	04	-	23	/	000	

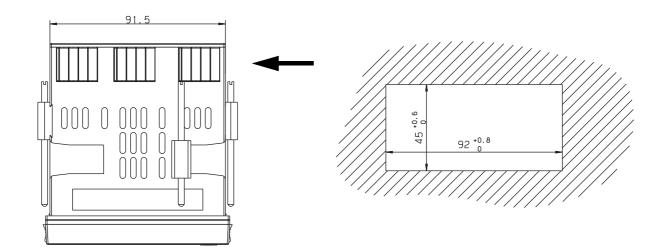
3.3 Accessories (included in delivery)

- 4× fastening elements, complete^a
- 3× CON plug-in link^a
- 3× jumper wire^b
- 1× seal for panel^a
- 1× fastening elements, complete^b
 - $1 \times$ DIN rail fastening left
 - 1× DIN rail fastening right
 - 3× wall mount
 - 3× fastening screw
- ^a For basic type extension 01 only (in the panel enclosure)
- ^b For basic type extension 05 only (in the surface-mounted enclosure)

3.4 Accessories (optional)

Туре	Part no.
Holder for C rail	00375749
Dummy cover 96 mm × 48 mm	00069680
Pipe mounting set	00398162
Weather protection roof complete for basic type extension 05	00401174
PC setup software	00560380
PC interface cable including USB/TTL converter and two adapters (USB connecting cable)	00456352


Optional board	Code	Part no.
Analog input (universal)	1	00442785
Relay (1× changeover)	2	00442786
Relay (2× NO)	3	00442787
Analog output	4	00442788
2 PhotoMOS [®] relays	5	00566677
Solid state relay 1 A	6	00442790
Voltage supply output DC ±5 V (e.g. for ISFET)	7	00566681
Voltage supply output DC 12 V (e.g. for inductive proximity switch)	8	00566682
Interface - RS422/485	10	00442782
Datalogger with RS485 interface	11	00566678
PROFIBUS-DP interface	12	00566679


4 Assembly

4.1 General

Mounting location	Find a location that ensures easy accessibility for the later calibration. The fastening must be secure and must ensure low vibration for the device.
	Avoid direct sunlight!
	Permissible ambient temperature at the installation location: -10 to +55 $^\circ$ C with max. 95 % rel. humidity, no condensation.
Installation position	The device can be mounted in any position.

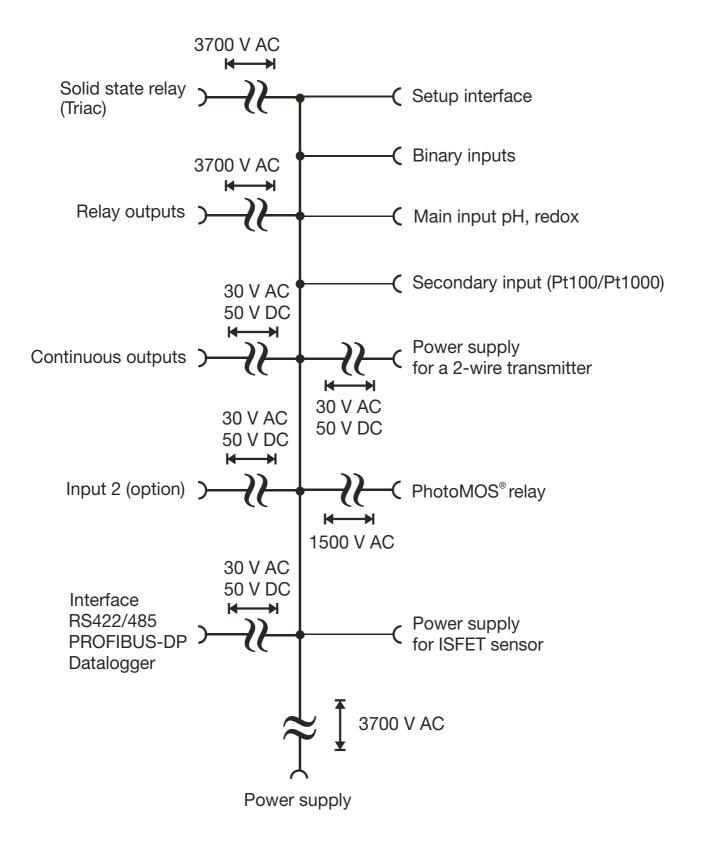
4.2 Dimensions

Close mounting

Minimum spacing of panel cutouts	Horizontal	Vertical
Without setup connector:	30 mm	11 mm
With setup connector (see arrow):	65 mm	11 mm

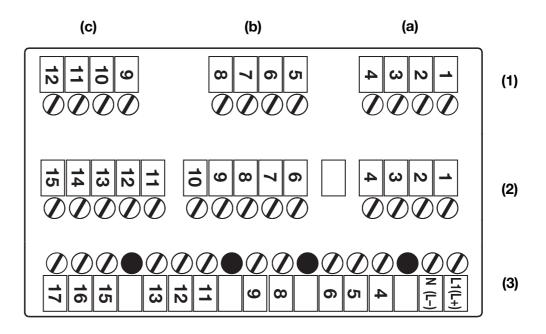
5.1 Installation instructions

The electrical connection must only be performed by qualified personnel!


- The choice of cable, the installation and the electrical connection must conform to the requirements of VDE 0100 "Regulations on the Installation of Power Circuits with Nominal Voltages below 1000 V" and the relevant local regulations.
- At maximum load, the cable must be heat resistant up to at least 80 °C.
- The device shall be operated by mains protected with a branch circuitry overcurrent protection device **not more** than 20 Amps.
 For servicing/repairing a Disconnecting Device shall be provided to disconnect all conductors.
- The load circuits must be fused for the maximum load currents in each case to prevent the relay contacts from becoming welded in the event of a short circuit.
- Electromagnetic compatibility meets the requirements of EN 61326.
- Lay the input, output, and supply lines so they are physically separated from each other and are not parallel.
- Use twisted and shielded probe cables. If possible, do not lay these cables close to components or cables through which current is flowing. Ground the shielding at one end.
- The probe cables must have an uninterrupted run (do not route them via terminal blocks or similar arrangements).
- No other consumers can be connected to the power terminals of the device.
- The device is not suitable for installation in areas with an explosion hazard.
- Apart from faulty installation, incorrect settings on the device may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the device and it should only be possible for qualified personnel to make settings.

Mounting information for conductor cross-sections and ferrules

Ferrule	Conductor of	cross-section	Minimum length of ferrule or
	Minimum	Maximum	stripping
Without ferrule	0.34 mm ²	2.5 mm ²	10 mm (stripping)
Without collar	0.25 mm ²	2.5 mm ²	10 mm
With collar up to 1.5 mm ²	0.25 mm ²	1.5 mm ²	10 mm
Twin, with collar	0.25 mm ²	1.5 mm ²	12 mm


Installation

5.2 Electrical isolation

5.3 Connection

5.3.1 Terminal assignment

(1)	Row 1	(a) Option 1	(b) Option 2	(c) Option 3				
(2)	Row 2	Main input board (pH/redox/temperature/standard signal)						
(3)	Row 3	PSU board (voltage supply/2× re		' <i>'</i>				

5.3.2 Optional board (row 1, slot a, b or c)

Function	Symbol	Terminal for slot (a)	Terminal for slot (b)	Terminal for slot (c)
Analog input				
Temperature sensor in a two-wire circuit		2	6	10
Pt100 or Pt1000		4	8	12
Temperature sensor in a three-wire circuit Pt100 or Pt1000	0 0 0	2 3 4	6 7 8	10 11 12
Resistance transmitter	E S	2 3 4	6 7 8	10 11 12
Electrical current		3	7	11
	o -	4	8	12

Installation

Function	Symbol	Termi for slo		rminal slot (b)		erminal [•] slot (c)
Voltage	O +	1		5		9
0(2) to 10 V	O -	2		6		10
Voltage	O +	2		6		10
0 to 1 V	o -	3		7		11
Continuous output	_					
Current or voltage	O +	2		6		10
-	o -	3		7		11
Modbus interface						
RS422						9
	0 RxD-					10
						11 12
						12
RS485	0 TxD- 0 RxD/TxD+					11
						12
PROFIBUS-DP interface	O RxD/TxD-					
						9
						10
	• (B) • (C)					11
						12
Data logger interface	0 BOND					
RS485	O RxD/TxD+					10
	O RxD/TxD-					11
Relay (1× changeover)						
	O 0	K3 1	K4	5	K5	9
	С Р	2		6		10
	o s	3		7		11
Relay (2× NO, common pin)	0 s			•		
	0 s	K3 1			K5	9
	0 P	2				10
		K6 3			K8	11
Triac (1 A)	└ <u> </u> 0 s	10 5			NO	11
	· · · · · · · · · · · · · · · · · · ·	K3 2	K4	6	K5	10
		3	114	7	110	11
		5		1		11
PhotoMOS [®] relay (0.2 A)		<u> </u>			1	
		K3 1	K4	5	K5	9
	¥≠ [™]	2		6		10
		_		-		
		K6 3	K7	7	K8	11
	x⇒	4		8		12

Function	Symbol	Terminal for slot (a)	Terminal for slot (b)	Terminal for slot (c)
Voltage supply for ISFET sensor				
DC ±5 V	O +	1	5	9
GND	O _	2	6	10
		3	7	11
	O ⊥	4	8	12
	O -			
DC +12 V	O +	1	5	9
GND	o -	2	6	10

5.3.3 Main board (row 2)

Function	Symbol	Terminal
Voltage supply for ISFET sensor	O +	11
DC ±4.85 V	O ⊥	10
GND	O -	15
Standard signal input for	O +	3
electrical current	o -	4
0(4) to 20 mA		
Standard signal input for voltage	O +	1
0(2) to 10 V or 10 to 0(2) V	0 -	4
Temperature sensor		2
in a two-wire circuit	e tt e	3
Pt100 or Pt1000	م ر	4
Temperature sensor	° \	2
in a three-wire circuit	¢	3
Pt100 or Pt1000	o	4
Resistance transmitter		4
	∕_o s	3
	O _ A	2
pH/redox electrode (see chapter	r 5.4 "Connectin	ig a pH
combination electrode", page 20) et seqq.)	
Shield for pH	1	6
(outer shielding, only with double		
shielded cable (triaxial cable)		
Glass/metal electrode	°	
	<u></u>	
	o	7
Reference electrode	°	8
	o	

Installation

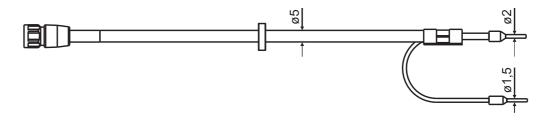
Liquid potential (LP) With asymmetrical connection, bridge between terminal 8 and 9 With symmetrical connection, LP on terminal 9	O	9
Binary inputs		
Binary input 1	<u>م</u>	12+
		14
Binary input 2	<u>م</u>	13+
		14

5.3.4 PSU board (row 3)

Function	Symbol	Terminal
Voltage supply for JUMO dTRAM	IS 02	
Voltage supply:	O	1 L1 (L+)
AC 110 to 240 V	0	2 N (L-)
Voltage supply: AC/DC 20 to 30 V		
n.c.	O	4
	•	5
	o	6
Voltage supply for external 2-wi	re transmitter	
DC 24 V (+20/-15 %)	O	8 L +
	o	9 L -
Relay 1	•	
Switching output K1	0 0	11
(floating)	Ф Р	12
	o s	13
Relay 2		
Switching output K2	0 0	15
(floating)	Ф Р	16
	o s	17

5.3.5 ISFET-pH-combination electrodeaccording to data sheet 201050

Connection	Color	Terminal	Row
	cap adapter	JUMO dTRANS	pH 02
Voltage supply for the cap adapter	r		
Voltage supply	Blue	11 L+	
DC ±5 V, 5 mA	Black	10 🔟	2
	Green	15 L-	
pH sensor	·	·	·
Sensor	White/Black	7	
Reference	Screen	8 + 9 jumpered	
RTD temperature probe	White	3	2
in 3-wire circuit	Red	2	
	Red/Black	4	

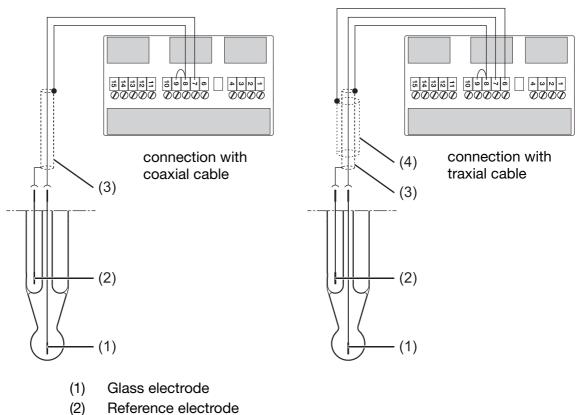

The orange strand of the cap adapter is not connected!

For process connection 615, the parameter INPUT TEMPERATURE/ TEMPERATURE SENSOR/CUST. SPECS. must be configured!

5 Installation

5.4 Connecting a pH combination electrode

5.4.1 pH connecting cable



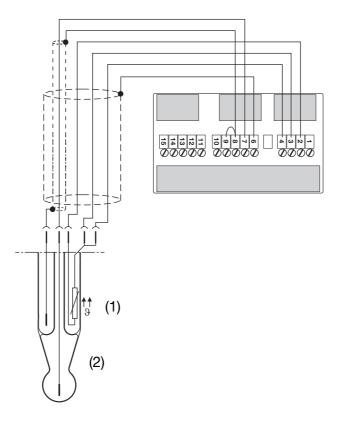
The following low-noise coaxial cables are recommended for connecting a pH measuring chain:

Length 1.5 m; type 202990/02-92-1.5-13; part no. 00085154 Length 5 m; type 202990/02-92-5-13; part no. 00307289 Length 10 m; type 202990/02-92-10-13; part no. 00082649

5.4.2 Asymmetrical connection of a combination electrode (standard)

 Connect the core wires according to the terminal assignment; see below and see chapter 5.3 "Connection", page 15 and following.

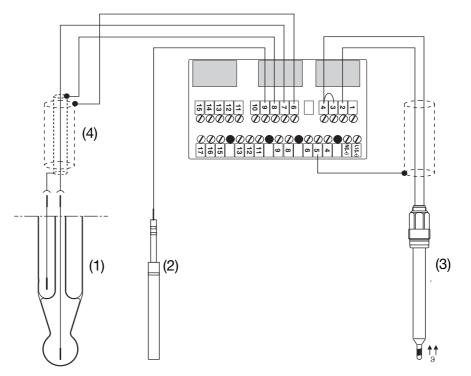
- (3) Shielding
- (4) outer shielding with triaxial cable (double shielding)


Double shielded coaxial cables (triaxial cables) must be used in environments with difficult EMC conditions. A shielded 2-core cable is required to connect a temperature probe.

5.4.3 Asymmetrical connection of a combination electrode with integrated temperature sensor (VarioPin)

For notes on the application see "Asymmetrical connection of pH electrodes", page 112.

 Connect the core wires according to the terminal assignment; see below and see chapter 5.3 "Connection", page 15.


- (1) Temperature sensor
- (2) pH combination electrode

5.4.4 Symmetrical connection of a combination electrode with separate temperature sensor

For notes on the application, see "Symmetrical connection of pH electrodes", page 113.

★ Connect the core wires according to the terminal assignment; see below and see chapter 5.3 "Connection", page 15.

- (1) pH combination electrode
- (2) Ground pin or conductive pipe/container wall at the measuring point
- (3) Separate temperature sensor
- (4) Double shielded coaxial cables (triaxial cables)

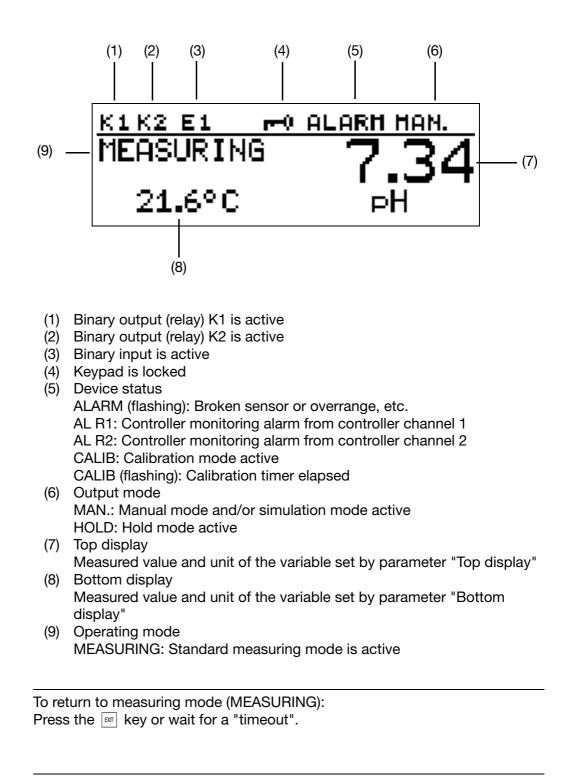
The premounted bridge (8-9) must be removed!

Double shielded coaxial cables (triaxial cables) must be used in environments with difficult EMC conditions. A shielded 2-core cable is required to connect a temperature probe.

Operation via the device keypad is described below.

Device operation via the optional set-up program, see chapter 14 "Setup program", page 93.

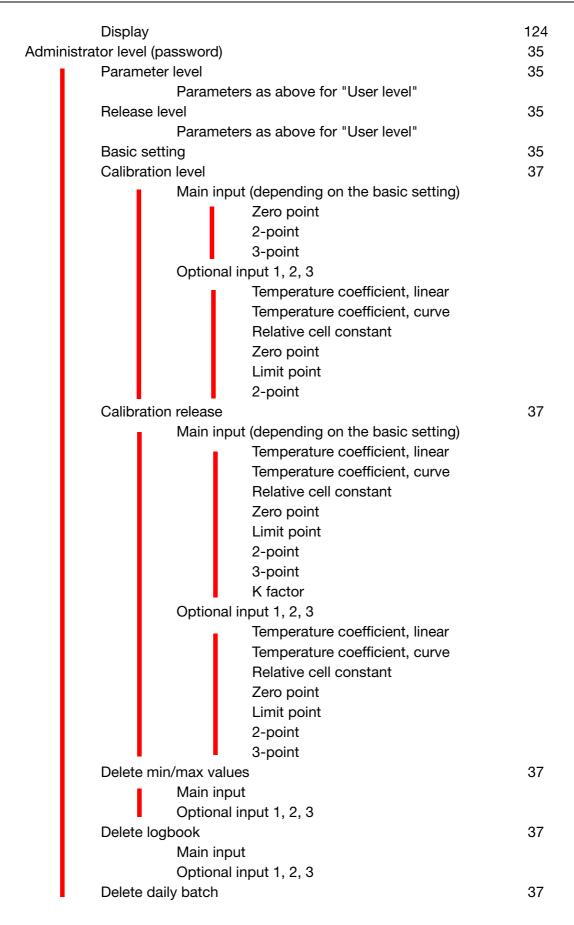
6.1 Controls



- (1) Measurement unit
- (2) Temperature
- (3) Operating mode
- (4) Measured value
- (5) **(5)** key Increase numerical value/Forward selection
- (6) vert key Decrease numerical value/Forward selection
- (7) rem key Change level/Forward selection/Confirm selection
- (8) EXIT key Cancel entry/Exit level

6.2 Display

6.2.1 Measuring mode (normal display)


Example

6.3 Principle of operation

6.3.1 Operation in levels

		_		See page
Meas	urement mod			
	Normal			28
			the main input	30
			the optional inputs	31
	Output o			31
		values of th	31	
			e input options	32
			ne math channels	32
		•	inputs and outputs	32
		mode overv		33
		re informati	on	33
		information		34
	User da			94
			ling on the basic setting)	48, 57, 63, 66
		mode/simu	lation	37
	Hold mo	ode		40
Main	menu			
	User lev			34
		Input pl		115
		•	mperature	115
		Optiona	-	116
			Analog input 1, 2, 3	
		Binary i	-	117
		_	Binary input 1, 2	
		Control		118
			Controller 1	
			Parameter set 1, 2	
			Configuration	
			Controller 2	
			Parameter set 1, 2	
			Configuration	
			Controller special functions	120
		Limit va	lue control	120
			Limit value 1, 2, 3	
		Binary o		117
			Binary output 1, 2, 3, 8	
		Analog	outputs	122
			Analog output 1, 2, 3	
		Interfac		123
		Wash ti	mer	123
		Datalog	ger	123

Delete total batch Calibration level	37 48, 57, 63
Main input	
Zero point	
2-point	
3-point	
Optional input 1, 2, 3	116
Temperature coefficient, linear	
Temperature coefficient, curve	
Relative cell constant	
Zero point	
LImit point	
2-point	
Calibration logbook	84
Main input	
Optional input 1, 2, 3	
Device information	34

6.4 Measuring mode

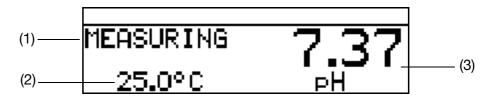
Different display types can be configured, see "Display of measured values STANDARD", page 107.

To return to measuring mode:

press the $\ensuremath{\mbox{\tiny ENT}}$ key or wait for a "timeout".

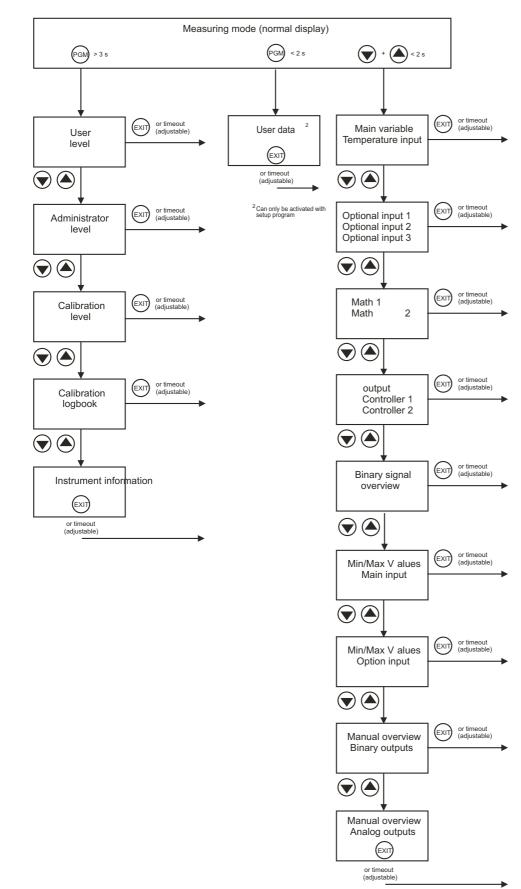
Measurements with "out of range" are ignored.

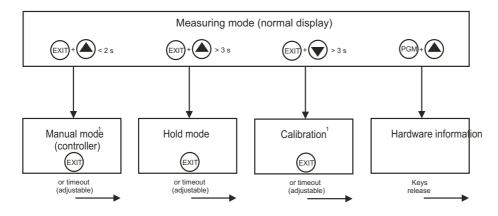
The min./max. value memory can be reset: Administrator level/Delete min/max.


When the basic setting is changed, the min and max values are deleted.

6.4.1 Normal display

Visualization


The following are displayed in measuring mode:


- Analog input signal
- Unit (for example pH)
- Temperature of the sample medium

- (1) MEASURING -> Measuring mode
- (2) 25.0 °C -> Temperature of the sample medium
- (3) 7.70 pH -> Measurement value calculated from the standard signal at the input

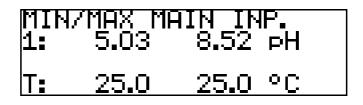
6.5 Input/output information

¹ Only if released

6.5.1 User data

Up to 8 parameters that are frequently changed by the user can be combined in the user level under "User data" (via setup program only).

Activating the display


The device is in measuring mode (normal display)

- * Briefly press the PGM key.
- * Select the required "quick setting" with the \blacktriangle and \bigtriangledown keys.

Editing

- * Briefly press the PGM key.
- ***** Edit the setting with the \blacktriangle and \bigtriangledown keys.

6.5.2 Min/max values of the main input

Activating the display

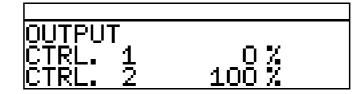
The device is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 Minimum and maximum values of the main value "1:" (pH, mV, %, ppm) and

temperature "T:" are displayed.

The extreme values of the main measurement variable and the temperature are **not** mutually assigned (for example not 5.03 pH for 25.0 $^{\circ}$ C).

6.5.3 Min/max values of the optional inputs

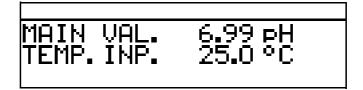


Activating the display

The device is in measuring mode (normal display)

★ Briefly press the a or key (several times if necessary).
 Minimum and maximum values of the optional inputs (1, 2 and 3) are displayed

6.5.4 Output level

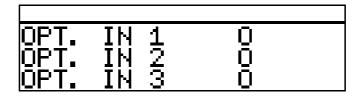


Activating the display

The device is in measuring mode (normal display)

 ★ Briefly press the ▲ or ▼ key (several times if necessary). The current output levels of the controller outputs.

6.5.5 Current values of the main entries



Activating the display

The device is in measuring mode (normal display)

 ★ Briefly press the or ▼ key (several times if necessary). The current values of the main output are displayed.

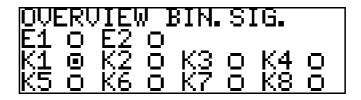
6.5.6 Current values of the optional entries

Activating the display

The device is in measuring mode (normal display)

★ Briefly press the ▲ or ▼ key (several times if necessary).
 The current values of the optional inputs (1, 2 and 3) are displayed.

6.5.7 Current values of the math channels



Activating the display

The device is in measuring mode (normal display)

 ★ Briefly press the ▲ or ▼ key (several times if necessary). The current values of the main output are displayed.

6.5.8 States of the binary inputs and outputs

Activating the display


The device is in measuring mode (normal display)

 ★ Briefly press the ▲ or ▼ key (several times if necessary. The states of binary inputs E1 and E2 and of relays K1 through K8 are displayed. In the example shown here, relay K1 is active.

6.5.9 Manual mode overview

Analog outputs (optional boards)

In this example, analog outputs 2 and 3 are working normally.

Switching outputs (PSU board and optional boards)

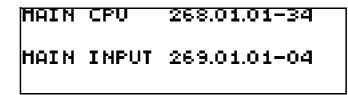
In this example relay output 2 is in manual mode.

The device is in "normal display" mode

***** Briefly press the \blacktriangle or \bigtriangledown key (several times if necessary).

Manual mode can only be displayed if at least one output is in manual mode. For example Administrator level/Parameter level/Binary outputs/ Binary output 1/Manual mode "Active" or "Simulation".

To return to measuring mode: press the Exit key or wait for a "timeout".


6.5.10 Hardware info

These displays are required for phone support.

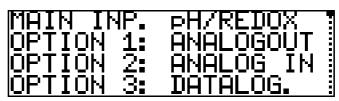
The device is in measuring mode (normal display)

***** Press and hold the \mathbb{P} and \blacktriangle keys.

Alternating display

OPTION 1	200.01.02
OPTION 2	
OPTION 3	193.02.01
BOOTLOADER	297.00.01

6.5.11 Device info


i

These displays provide an overview of fitted hardware options and the settings of inputs (helpful for troubleshooting, etc.).

- ***** Press the \mathbb{P} key for longer than 3 seconds.
- ***** Briefly press the \blacktriangle or \bigtriangledown key (several times if necessary).
- * Select Device info

★ Press the PGM keys.

★ Briefly press the ▲ or ▼ key (several times if necessary).
 For further information about the inputs, press the ▲ or ▼ keys.

6.6 User level

All the parameters that the Administrator (see chapter 6.7 "Administrator level", page 35) has released can be edited at this level. All the other parameters (marked by a key $\mathbf{\hat{T}}$) are read only.

* Press the key for longer than 2 seconds.

* Select "USER LEVEL".

All possible parameters are accessed below. Depending on the configuration of a specific device, some of these parameters may not appear.

6.6.1 Parameters of the User level

See chapter 18.2 "Parameters of the User level", page 115.

6.7 Administrator level

- All the parameters can be edited at this level.
- At this level, it is also possible to define which parameters can be edited by a "normal" user (operator) and which calibrations can be performed.

To get to the Administrator level, proceed as follows:

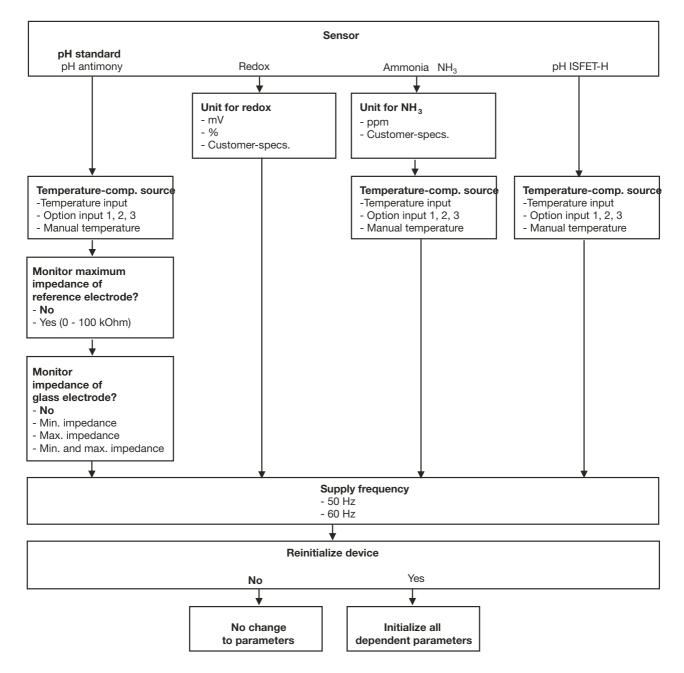
- * Press the PGM key for longer than 2 seconds.
- ***** Use the \mathbf{V} or \mathbf{A} keys to select "ADMINISTR. LEVEL".
- ***** Use the \blacksquare and \blacksquare keys to enter the password 300 (factory setting).
- ★ Confirm the ^{PGM} key.

6.7.1 Parameter level

The settings that can be made here are the same as those at the User level, see "User level", page 34. As the operator (user) has administrator rights here, the parameters that are locked in the User level can now also be modified.

6.7.2 Release level

All parameters can be released (modification possible) or locked (no modification possible) for editing at operator level.


6.7.3 Basic settings

The JUMO dTRANS 02 pH has a basic setting wizard, to make it easier for the user to configure the extensive setting options of the device and to avoid configuration conflicts.

The basic settings are reached via ADMINISTR. LEVEL/PASSWORD/ BASIC SETTING.

All the important settings are systematically polled here. At the end, once a request for conformation has been acknowledged, the device is initialized with the new settings. Dependent parameters are checked and adjusted.

Basic setting wizard

6.7.4 Calibration level

Depending on which operating mode has been configured (in the Basic setting menu), one or more of the following calibration options will be available:

- Zero point
- 2-point calibration (only with setting "pH STANDARD" and "pH ANTIMONY"
- 3-point calibration (only with setting "pH STANDARD" and "pH ANTIMONY"

6.7.5 Calibration release

Which calibration procedure may be performed directly and which may not can be configured here, see chapter 8.2.2 "Ways to start the calibration", page 49.

6.7.6 Delete min/max values

If required, the values can be deleted once a request for confirmation has been acknowledged.

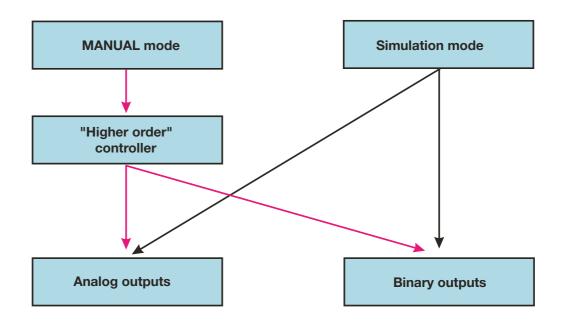
See chapter 6.5.2 "Min/max values of the main input", page 30 or see chapter 6.5.3 "Min/max values of the optional inputs", page 31.

6.7.7 Delete logbook

The last five calibration processes for each input are archived in the calibration logbook. If a "Datalogger" optional board is fitted, the date and time are also archived.

If necessary the logbook can be deleted after a confirmation prompt.

6.7.8 Delete daily batch


If required, the counter can be deleted once a request for confirmation has been acknowledged.

6.7.9 Delete total batch

If required, the counter can be deleted once a request for confirmation has been acknowledged.

6.8 MANUAL mode/Simulation mode

These functions can be used to set the switching outputs and analog outputs of the device manually to a defined state. This facilitates dry startup, troubleshooting and customer service.

Simulation mode accesses the analog outputs and binary outputs **directly**. When simulation mode has been selected, MANUAL mode is **not** possible!

In MANUAL mode the settings for "higher order controllers" are taken into consideration.

6.8.1 MANUAL mode only via "higher order" controller functions

Select manual mode

In the factory setting of the device the MANUAL mode parameter is locked and can **only be activated by the administrator**!

This parameter must first be released for other users, see "Release level", page 35.

- * Set ADMINISTR. LEVEL/PARAMETER LEVEL/CONTROLLER/ CTRL.SPEC. FUNCT./MANUAL MODE "Locked, Coding or Switching.
- Locked = No Manual mode, control is via device.
- Coding = The outputs are active as long as the $\mathbf{\nabla}$ or $\mathbf{\Delta}$ key is pressed.
- Switching = the outputs are active if the **▼** or **▲** key is pressed. If the corresponding key is pressed again, the output becomes inactive again.

Activate Manual mode

The device is in Display mode

 ★ Press the I and ▲ keys for less than 2 seconds. The word MANUAL appears in the status line of the display.

Δ	If the EVT keys (alone) are pressed for longer than 3 seconds, the device switches to language selection!		
	If the Even and \bigwedge keys are pressed for longer than 3 seconds, the device goes into HOLD mode.		
	Then the outputs of the device respond according to the default settings.		
	To exit HOLD mode, press the \mathbb{E} and \blacktriangle keys for longer than 3 seconds.		
	Control is not longer via the device. The output level of the controllers is 0 %.		
	Controller 1 is activated by the \blacktriangle key. In this case the output level of controller 1 is 100 %.		
	Controller 2 is activated by the $\boxed{\mathbf{V}}$ key. In this case the output level of controller 2 is 100 %.		
Deactivation			
	★ Press the ENT key.		
	Control is once again through the outputs of the device. The word MANUAL appears in the status line of the display.		

6.8.2 Simulation of binary outputs

Activate simulation

In the factory setting of the device the MANUAL mode parameter is set to "No simulation" and can **only be activated by the administrator**! This parameter must first be released for other users, see "Release level", page 35.

If a higher order switching function has been assigned to an output, Simulation mode is not possible for that output.

*	Set ADMINISTR. LEVEL/PARAMETER LEVEL/BINARY OUTPUTS/
	BINARY OUTPUT1 (8) "Manual mode no simulation, Inactive or Active ".

No simulation	= No Manual mode, control is via device.
Inactive	 Relay K1 or K2 is de-energized; the word MANUAL appears in the status line of the display
Active	 Relay K1 or K2 is energized; the word MANUAL appears in the status line of the display

Deactivate manual mode

No simulation = No Manual mode, control is via device.

When the device is in display mode, the word MANUAL disappears from the status line of the display.

6.8.3 Simulation of analog outputs via MANUAL mode

Release and activation

 Select activation of simulation of the actual value output: ADMINISTR. LEVEL/PARAMETER LEVEL/ANALOG OUTPUTS/ ANALOG OUTPUT 1 (2, 3)/SIMULATION/ON.

With "On" the output takes on the value of the "Simulation value" parameter.

When the device is in display mode, the word MANUAL appears in the status line of the display.

Deactivation

* ADMINISTR. LEVEL/PARAMETER LEVEL/ANALOG OUTPUTS/ ANALOG OUTPUT 1 (2, 3)/SIMULATION/OFF.

The corresponding output of the device works again.

When the device is in display mode, the word MANUAL disappears from the status line of the display.

6.9 HOLD mode

In HOLD status the outputs take on the states programmed in the relevant parameter (controller channel, switching output or analog output).

This function can be used to "freeze" switching outputs and the analog outputs of the device. This means the current status of the output will be retained even when the measured value changes. Control is not via the device.

If MANUAL mode is activated while HOLD mode is activated, MANUAL mode takes precedence and MANUAL then appears in the status line of the display! MANUAL mode can be terminated by pressing the Extra key. If HOLD mode is still activated (by the binary input or by keyboard), the device then returns to HOLD mode!

HOLD mode can be activated by pressing the key or by the binary input.

Activation by pressing key

 Press and hold the m and keys longer than 3 seconds. Then the outputs of the device respond according to the default settings. The word HOLD appears in the status line of the display.

If the \square and \blacksquare keys are pressed for less than 3 seconds, the device goes into Manual mode.

Then the outputs of the device respond according to the default settings.

Pressing a key to deactivate HOLD mode

***** Press the \square and \blacksquare keys for longer than 3 seconds.

If the \fbox{m} and \bigstar keys are pressed for less than 3 seconds, the device goes into Manual mode.

Then the outputs of the device respond according to the default settings.

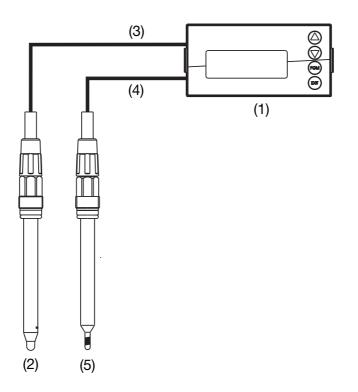
Control is through the outputs of the device again. The word MANUAL disappears from the status line of the display.

7 Commissioning

7.1 Getting started

Some suggestions follow for configuring the device reliably in little time.

- * Mount the device, see chapter 4 "Assembly", page 12.
- * Install the device, see chapter 5 "Installation", page 13 ff.
- * Call up Administrator level (ADMINISTR. LEVEL).
- * Enter password 0300 (factory setting).
- * Call up PARAMETER LEVEL/DISPLAY/OPERAT. TIMEOUT.
- * Set OPERAT. TIMEOUT to 0 minutes (no timeout).
- * Leave the Display level with "EXIT"
- * Leave the Parameter level with "EXIT"
- Select BASIC SETTING and work through all the menu items, see chapter 6.7.3 "Basic settings", page 35.
- * Answer "YES" to the "Reinitialize device" query
- * Configure the required additional parameters.
- Calibrate the device to the sensor and sample medium, see chapter 8 "Calibrating a pH measurement chain", page 48 or see chapter 9 "Calibrating a redox measurement chain", page 57 or see chapter 10 "Calibrating an ammonia sensor", page 63 or see chapter 11 "Calibrating a sensor with a standard signal", page 66.


7.2 Setting examples

7.2.1 Measuring the pH value with pH combination electrode

pH measurement with automatic temperature compensation.

Layout

		Data sheet
(1)	Transmitter/controller type 202551	202551
(2)	pH combination electrode on the main board	201020
(3)	Coaxial cable	202990
(4)	Two-wire shielded cable	202990
(5)	Compensation thermometer Pt100 on the main board	201085

Electrical connection

See chapter 5 "Installation", page 13.

Task

2 to 12 pH 4 to 20 mA
Pt100
Pulse width controller
pH 6.5
pH 8.5

7 Commissioning

Basic setting

Start the basic settings, see chapter 6.7.3 "Basic settings", page 35. Diagrammatic overview, see "Basic setting wizard", page 36.

Sensor	pH standard
Temperature compensation source	Temperature input
Reference monitoring	Off
Glass electrode monitoring	Off
Supply frequency	50 Hz
Reinitialize device	Yes

Temperature input

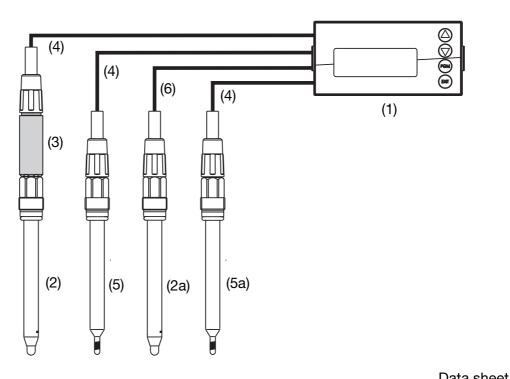
Administrator level/Password/Parameter level/Temperature input Temperature sensor Pt100

Analog output

Administrator level/Password/Parameter level/Analog outputs/Analog output 1

Signal source	Main variable
Signal type	4 to 20 mA
Start of scaling	2.00 pH
End of scaling	12.00 pH

Controller settings


See chapter 13.6.2 "Controller with PID behavior and pulse length output", page 91.

7.2.2 pH differential measurement

Both pH measurements are automatically temperature compensated.

Layout

		Data sheet
(1)	Transmitter/controller type 202551	202551
(2)	pH combination electrode with 2-wire transmitter	201020
(2a)	pH combination electrode on main board	201020
(3)	Two-wire transmitter on optional board 1	202701
(4)	Two-wire shielded cable	202990
(5)	Compensation thermometer Pt100 on optional board 2	201085
(5a)	Compensation thermometer Pt100 on main board	201085
(6)	Coaxial cable	202990

Electrical connection

See chapter 5 "Installation", page 13.

7 Commissioning

Task

Measurement range (main board):2Measurement range (optional board):2Output signal (main board):4Temperature measurementsPtActual value for the controller:mLimit value control:limLimit value 1:ptLimit value 2:pt

2 to 12 pH 2 to 12 pH 4 to 20 mA Pt100 main board limit value function pH 6.5 pH 8.5

Basic setting of main board

Start the basic settings, see chapter 6.7.3 "Basic settings", page 35. Diagrammatic overview, see chapter "Basic setting wizard", page 36.

Sensor	pH standard
Temperature compensation source Reference monitoring	Temperature input Off
Glass electrode monitoring	Off
Supply frequency	50 Hz
Reinitialize device	Yes

Input for main board temperature

Administrator level/Password/Parameter level/Temperature input

Temperature sensor

Analog output of main board

Administrator level/Password/Parameter level/Analog outputs/Analog output 1

Pt100

Signal source	Main variable
Signal type	4 to 20 mA
Start of scaling	2.00 pH
End of scaling	12.00 pH

Basic setting for optional board 1

Administrator level/Password/Parameter level/Optional inputs/Analog input 1

Operating mode	pH measurement
Signal type	4 to 20 mA
Start of scaling	-600 mV (depending on the two-wire transmitter)
End of scaling	+600 mV (depending on the two-wire transmitter)
Temperature compensation source	Optional input 2

Basic setting for optional board 2

Administrator level/Password/Parameter level/Optional inputs/Analog input 2Operating modeTemperatureSignal typePt100

Signal type	Pt100
Connection type	2-wire

Controller settings

See chapter 13.6.1 "Simple limit monitoring", page 90.

8.1 Notes

During calibration, relays and analog output signals adopt their configured states!

When is calibration required?

- At regular intervals (depending on the sample medium and requirements).
- If negative values appear in the top display.
- If the top display indicates "Underrange/Overrange".

Every successfully completed calibration is documented in the calibration logbook, see chapter 12 "Calibration logbook", page 84.

8.2 General information

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This causes the output signal of the sensor to change.

The transmitter uses a typical, concentration-dependent characteristic to measure ammonia with "normal" accuracy requirements. The individual properties of the sensor are taken into account here by offsetting the zero point. This considerably reduces the effort required for calibration.

The transmitter software is specially adapted for coolant monitoring.

8.2.1 Requirements

- The device must be supplied with voltage, see chapter 5 "Installation", page 13 ff.
- A combination electrode must be connected to the transmitter.

1

For a configuration example see chapter 7.2.1 "Measuring the pH value with pH combination electrode", page 43.

A pH sensor can be connected to the optional board

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a 2-wire transmitter.
- "PH STANDARD" must be configured as sensor in the basic setting.
- The device is in Measurement mode.

8.2.2 Ways to start the calibration

Select the input to which the pH sensor is connected.

If Calibration level is not released

Press the Rev for longer than 3 seconds/ADMINISTR. LEVEL/PASSWORD/ CALIBR. LEVEL/MAIN INPUT or ANALOG INPUT.

If Calibration level is released

Press the m and ▼ keys simultaneously/MAIN INPUT or ANALOG INPUT.

If Calibration level is released

Press the $\ensuremath{\,\mbox{\tiny FM}}$ key for longer than 3 seconds/CALIBR. LEVEL/MAIN INPUT or ANALOG INPUT.

8.2.3 Calibration options

The device provides two calibration options for adapting the JUMO dTRANS 02 pH to a pH combination electrode:

One-point offset calibration

The zero point of the pH combination electrode is calibrated, see chapter 8.3 "Zero point (1-point) calibration", page 50. Recommended only for special applications, such as ultra-pure water.

Two-point calibration

The zero point and slope of the combination electrode are calibrated, see chapter 8.4 "2-point calibration", page 51. This is the recommended calibration for most sensors.

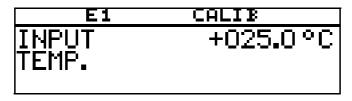
Three-point calibration

In three-point calibration, the zero point and the slope are calibrated in the acidic range and the slope is calibrated in the alkaline range, see chapter 8.4 "2-point calibration", page 51.

This calibration is recommended with heightened requirements for accuracy.

8.3 Zero point (1-point) calibration

- * Make preparations, see chapter 8.2 "General information", page 48.
- * Start calibration, see chapter 8.2.2 "Ways to start the calibration", page 49.
- * Select zero point calibration.

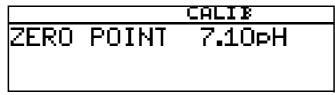

- Immerse the combination electrode in a buffer solution with a known pH value.
- * Start the zero point calibration with the m key.

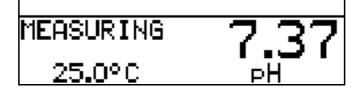
Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.

An example follows: Manual temperature entry:

★ With manual temperature entry, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the [™] key.

★ Wait until the display value has stabilized; then press Imm to continue.



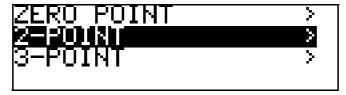

★ Set the displayed value to the buffer solution value with the ▼ or ▲ keys; then press ™ to continue.

★ Use the key to accept the zero point or the key to reject it.

The device returns to measuring mode.

If the following permissible limits of the calibration values are not observed in the calibration procedure then an error is displayed at the end of the procedure:

Antimony electrode: -2 ... 2 pH Standard glass electrode 5 ... 9 pH


8.4 2-point calibration

The buffer solutions (reference solutions) used for calibration must differ by at least 2 pH!

During the calibration, the temperature of the two buffer solutions must be identical and remain constant!

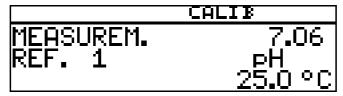
- * Make preparations, see chapter 8.2 "General information", page 48.
- * Start calibration, see chapter 8.2.2 "Ways to start the calibration", page 49.
- ***** Select 2-point calibration.

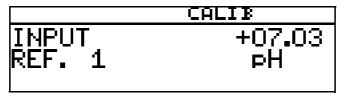
 Immerse the combination electrode in the first buffer solution with the known pH value.

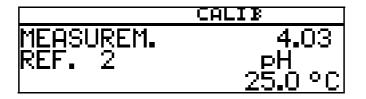
* Start the two-point calibration with the M key.


i

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.


An example follows: Manual temperature entry:

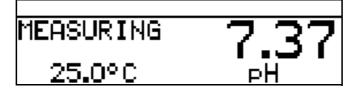

★ With manual temperature entry, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the [™] key.


★ Wait until the display value has stabilized; then press [▶] to continue.

★ Set the displayed value to the value of the first buffer solution with the and ▲ keys; then press to continue.

- * Rinse and dry the pH combination electrode.
- * Immerse the pH combination electrode in the second buffer solution.
- ★ Wait until the display value has stabilized; then press Imm to continue.

★ Set the displayed value to the second buffer solution value with the ▼ or
 ▲ keys; then press
 to continue.



The zero point and slope determined by the device are displayed.

★ Use the key to accept the calibrated values or reject them with the m key.

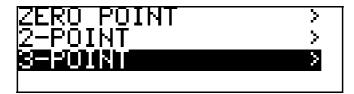
The device returns to measuring mode.

If the following permissible limits of the calibration values are not observed in the calibration procedure then an error is displayed at the end of the procedure:

 Antimony electrode:
 -2 ... 2 pH, slope 10 ... 110 %

 Standard glass electrode
 5 ... 9 pH, slope 75 ... 110 %

8.5 3-point calibration

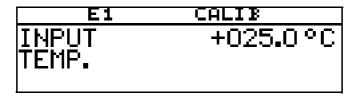

The buffer solutions (reference solutions) used for calibration must have the following values:

Buffer solution 1: in the neutral range (if possible precisely 7 pH) Buffer solution 2: Greater than 9 pH Buffer solution 3: Less than 5 pH

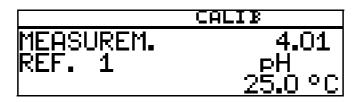
The temperature of the buffer solutions must be equal and remain constant during calibration!

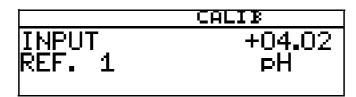
The buffer solutions can be used in any order during the calibration.

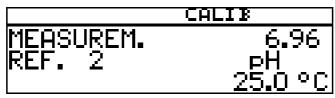
- * Make preparations, see chapter 8.2 "General information", page 48.
- * Start calibration, see chapter 8.2.2 "Ways to start the calibration", page 49.
- * Select 3-point calibration.

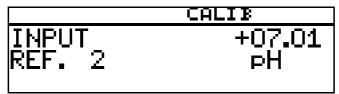

- Immerse the combination electrode in the first buffer solution with the known pH value.
- * Start the 3-point calibration with the m key.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration.


An example follows: Manual temperature entry:


★ With manual temperature entry, use the ▼ and ▲ keys to set the calibration solution temperature and confirm your entry with the m key.


★ Wait until the display value has stabilized; then press M to continue.


★ Set the displayed value to the value of the first buffer solution with the ▼ and ▲ keys; then press ™ to continue.

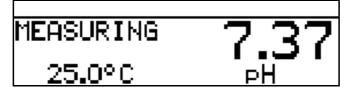
- * Rinse and dry the combination electrode.
- ★ Immerse the combination electrode in the second buffer solution with the known pH value. Wait until the display value has stabilized; then press rule to continue.

★ Set the displayed value to the second buffer solution value with the ▼ or
 ▲ keys; then press [™] to continue.

- * Rinse and dry the combination electrode.
- ★ Immerse the combination electrode in the third buffer solution with the known pH value. Wait until the display value has stabilized; then press read to continue.

* Set the displayed value to the third buffer solution value with the V and

▲ keys; then press I to continue.



The zero point of the combination electrode determined by the device and its slope in the acidic and alkaline ranges of the characteristic curve are also displayed.

★ Use the [™] key to accept the calibrated values or reject them with the [™] key.

	CALIB		
ZERO POINT	7.01 ⊳H		
SLOPE ACID	100.3 %		
SLOPE ALCA	99.4 %		

The device returns to measuring mode.

If the following permissible limits of the calibration values are not observed in the calibration procedure then an error is displayed at the end of the procedure:

 Antimony electrode:
 -2 ... 2 pH, slope 10 ... 110 %

 Standard glass electrode
 5 ... 9 pH, slope 75 ... 110 %

8.6 pH Antimony measurement chains, ISFET pH combination electrodes

Antimony measurement chains and ISFET pH combination electrodes are calibrated similarly to "normal" pH measurement chains.

- General information on calibration see "General information", page 48.
- Zero point calibration see chapter 8.3 "Zero point (1-point) calibration", page 50.
- 2-point calibration see chapter 8.4 "2-point calibration", page 51.
- 3-point calibration see chapter 8.5 "3-point calibration", page 54.

9.1 Notes

During calibration, relays and analog output signals adopt their configured states!

When is calibration required?

- At regular intervals (depending on the sample medium and requirements).
- If negative values appear in the top display.
- If the top display indicates "Underrange/Overrange".

Every successfully completed calibration is documented in the calibration logbook, see chapter 12 "Calibration logbook", page 84.

9.2 General information

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This changes the output signal of the sensor.

9.2.1 Requirements

- The device must be supplied with voltage, see chapter 5 "Installation", page 13 ff.
- A redox sensor must be connected to the transmitter.

For a configuration example see chapter 7.2.1 "Measuring the pH value with pH combination electrode", page 43.

A redox sensor can be

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a 2-wire transmitter.

A temperature compensation is **not** performed during the measurement of the redox potential!

- "REDOX" must be configured as sensor in the basic setting.
- The device is in Measurement mode.

9.2.2 Ways to start the calibration

Select the input to which the pH sensor is connected.

If Calibration level is not released

Press the red key for longer than 3 seconds/ADMINISTR. LEVEL/PASSWORD/ CALIBR. LEVEL/MAIN INPUT or OPTION INPUT.

If Calibration level is released

Press the main and vers simultaneously/MAIN INPUT or OPTION INPUT.

If Calibration level is released

Press the $\ensuremath{\,\mbox{\tiny PM}}$ key for longer than 3 seconds/CALIBR. LEVEL/MAIN INPUT or OPTION INPUT.

9.2.3 Calibration options

The device offers two calibrating options for adjusting it to the redox measurement chain.

- One-point calibration If "mV" was configured as UNIT.
- One-point calibration If "mV" or "CUST. SPECS." was configured as UNIT.

One-point offset calibration

The zero point of the pH combination electrode is calibrated, see chapter 8.3 "Zero point (1-point) calibration", page 50. Recommended only for special applications, such as ultra-pure water.

Two-point calibration

The zero point and slope of the combination electrode are calibrated, see chapter 8.4 "2-point calibration", page 51.

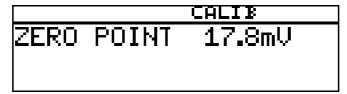
This is the recommended calibration for most sensors.

9.3 Zero-point calibration (one-point offset calibration)

Zero point calibration is only available if the unit is configured as "mV"!

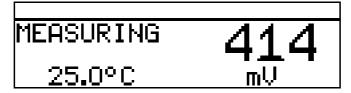
- * Make preparations, see chapter 9.2 "General information", page 57.
- * Start calibration, see chapter 9.2.2 "Ways to start the calibration", page 58.
- * Select zero point calibration.

- Immerse the combination electrode in a test solution with a known redox potential.
- * Start the zero point calibration with the PGM key.



Wait until the display value has stabilized; then press PGM to continue.

★ Set the displayed value to the test solution value with the ▼ or ▲ keys; then press ^{PGM} to continue.



The zero point determined by the device is displayed.

★ Use the read key to accept the value or the Ext key to reject it.

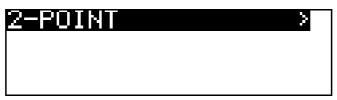
The device returns to measuring mode.

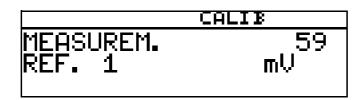
Calibration is complete

After rinsing, the combination electrode can again be used to take measurements.

If the following permissible limits of the calibration values are not observed in the calibration procedure then an error is displayed at the end of the procedure:

Zero point: -200 ... 200 mV

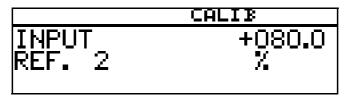

9.4 2-point calibration


This procedure can be used to scale the absolute input signal (mV) to a displayed relative value (%). That greatly simplifies the evaluation of the measured value (good/bad).

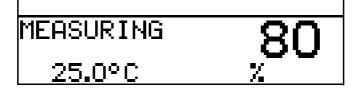
Two-point calibration is only available if the unit is configured as "%" or "Cust. specs."!

- * Make preparations, see chapter 9.2 "General information", page 57.
- * Start calibration, see chapter 9.2.2 "Ways to start the calibration", page 58.
- ***** Select 2-point calibration.

- Immerse the combination electrode in a solution with a known "good" redox potential.
- * Start the 2-point calibration with the Rew key. Wait until the display value has stabilized; then press Rew to continue.


★ Set the displayed value to the relative "good" value (in this example 20%) with the ▼ and ▲ keys; then press ™ to continue.

- * Rinse and dry the redox combination electrode.
- ★ Immerse the combination electrode in a solution with a known "bad" redox potential. Wait until the display value has stabilized; then press red to continue.


★ Set the displayed value to the relative "bad" value (in this example 80%) with the ▼ and ▲ keys; then press ™ to continue.

***** The zero point and slope determined by the device are displayed.

★ Use the ^{Pow} key to accept the calibrated values or reject them with the ^{Evi} key.

The device returns to measuring mode.

Calibration is complete

After rinsing, the combination electrode can again be used to take measurements.

If the following permissible limits of the calibration values are not observed in the calibration procedure then an error is displayed at the end of the procedure: Zero point: -9999 ... 9999 %

Zero point:	-9999 9999 %
Slope:	-9999 9999 %

10.1 Notes

During calibration, relays and analog output signals adopt their configured states!

When is calibration required?

- At regular intervals (depending on the sample medium and requirements).
- If negative values appear in the top display.
- If the top display indicates "Underrange/Overrange".

Every successfully completed calibration is documented in the calibration logbook, see chapter 12 "Calibration logbook", page 84.

10.2 General information

The electrical properties of all sensors vary slightly from instance to instance and also change during operation (due to deposits or wear, etc.). This changes the output signal of the sensor.

The transmitter uses a typical, concentration-dependent characteristic to measure ammonia with "normal" accuracy requirements. The individual properties of the sensor are taken into account here by offsetting the zero point. This considerably reduces the effort required for calibration.

The transmitter software is specially adapted for coolant monitoring.

10.2.1 Requirements

- The device must be supplied with voltage, see chapter 5 "Installation", page 13 ff.
- An ammonia sensor must be connected to the transmitter.

For a configuration example see chapter 7.2.1 "Measuring the pH value with pH combination electrode", page 43.

An ammonia sensor can be

- connected directly to the main input or
- connected to the "Analog input (universal)" optional board via a 2-wire transmitter.
- "AMMONIA" must be configured as sensor in the basic setting.

10 Calibrating an ammonia sensor

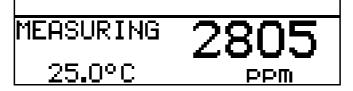
10.2.2 Ways to start the calibration

Select the input to which the sensor is connected.

If Calibration level is not released

Press the press the longer than 3 seconds/ADMINISTR. LEVEL/PASSWORD/ CALIBR. LEVEL/OPTIONAL INPUT.

If Calibration level is released


Press the $\operatorname{\tiny PM}$ and \bigtriangledown keys simultaneously/OPTION INPUT.

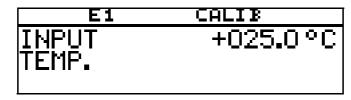
If Calibration level is released

Press the mikey for longer than 3 seconds/CALIBR. LEVEL/OPTION INPUT.

10.3 Zero point (1-point) calibration

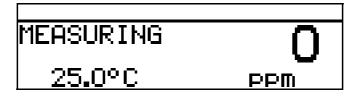
The transmitter is in "Measuring mode".

- * Immerse the combination electrode in a solution without ammonia.
- * Make preparations, see "Requirements", page 63.
- * Start calibration, see "Ways to start the calibration", page 64.


* Start the zero point calibration with the rem key.

Now the source of temperature acquisition can be selected (manually, or using the temperature input of the basic board, or the temperature input via the optional board). This source will be active for the duration of the calibration. An example follows: Manual temperature entry:

***** With manual temperature entry, use the \mathbf{V} and \mathbf{A} keys to set the solution temperature and confirm your entry with the key.


* Wait until the display value has stabilized; then press *weit* to continue

* Wait until the display value has stabilized; then press *well* to continue.

★ Use the May key to accept the calibration result or the *key* to reject it.

The device returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

If the following permissible limits of the calibration values are not observed in the calibration procedure then an error is displayed at the end of the procedure: -312 ... 588 mV Zero point:

11.1 General information

During calibration, relays and analog output signals adopt their configured states!

Sensors with a standard signal output can only be connected to an "Analog input (universal)" optional board!

The sensors connected to the device should be cleaned and the device itself calibrated, at regular intervals (subject to the sample medium).

Every successfully completed calibration is documented in the calibration logbook, see chapter 12 "Calibration logbook", page 84.

11.1.1 Operating modes

The operating mode selection depends on which sensor (transmitter) is connected.

Linear operating mode

For example sensor for free chlorine, redox, pressure, liquid level or humidity

pH operating mode

For example pH sensor

Conductivity operating mode

For example sensor for conductivity, concentration

Customer specs.

For sensors with non-linear characteristics. Up to 20 interpolation points can be defined in an device table. This allows for an excellent approximation of a non-linear characteristic.

Chlorine, pH and temperature-compensated

Combination of chlorine sensor and pH sensor and temperature sensor. The measured value for chlorine often depends to a great extent on the pH value of the solution.

The chlorine measurement is compensated depending on the pH value in this operating mode. The pH measurement is temperature-compensated

11.1.2 Calibration options

Different calibration options are available depending on the operating mode.

Operating mode	Calibration options					Page
	1-point	2-point	Limit point	Rel. cell const.	Temp. coeffic.	
Linear	Х	Х	Х	-	-	68
рН	Х	Х	-	-	-	73
Conductivity	-	-	-	Х	Х	74
Concentration	-	-	-	Х		80
Customer specs.	Due to the table with interpolation points, no calibration is required					
Chlorine, pH-compensated	-	-	X	-	-	82

- With **one-point (offset) calibration**, the zero point of the sensor is calibrated.
- With **two-point calibration**, the zero point and slope of the sensor are calibrated. This is the recommended calibration for most sensors.
- With one-point final value calibration, the slope of the sensor is calibrated. This is the recommended calibration for chlorine sensors, for example.
- Calibration of relative cell constant With conductivity sensors only.
- Calibration of the temperature coefficient With conductivity sensors only.

11.1.3 Ways to start the calibration

Select the input to which the sensor is connected.

If Calibration level is not released

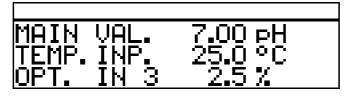
Press the red key for longer than 3 seconds/ADMINISTR. LEVEL/PASSWORD/ CALIBR. LEVEL/OPTIONAL INPUT.

If Calibration level is released

Press the main and very simultaneously/OPTION INPUT.

If Calibration level is released

Press the press the key for longer than 3 seconds/CALIBR. LEVEL/OPTION INPUT.

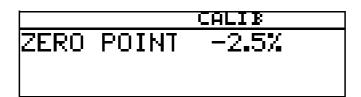

11.2 Linear operating mode

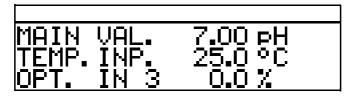
11.2.1 1-point calibration

This example is based on a liquid level measurement (as a %). The input signal is provided by a pressure transmitter.

The transmitter is in "Measuring mode".

- Now bring the system to a defined state (e.g. when measuring liquid level, empty the container).
- * Start the calibration, see "Ways to start the calibration", page 67.
- * Select the zero point calibration with the read key.


* Wait until the display value has stabilized; then press Ref to continue.


Set the displayed value to the required value (usually 0%) with the \mathbf{V} and \mathbf{k} keys; then press \mathbf{k} to continue.

The zero point determined by the device is displayed.

Use the read key to accept the value or the read key to reject it. The device returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

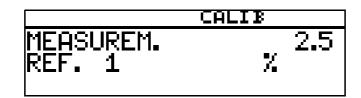
11.2.2 Two-point calibration

The values determined during calibration (zero point and slope) work out as follows:

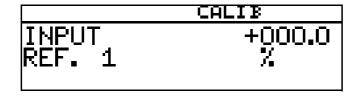
 $Display = \frac{Input value}{Slope} + Zero point$

This example is based on a liquid level measurement. The input signal is provided by a pressure transmitter.

The transmitter is in "Measuring mode".



- Now bring the system to a defined state (e.g. when measuring liquid level, empty the container).
- * Start the calibration, see "Ways to start the calibration", page 67.
- * Select the 2-point calibration with the red key.


11 Calibrating a sensor with a standard signal

★ Wait until the display value has stabilized; then press to continue.

★ Set the displayed value to the required value (usually 0) with the ▼ and
 ▲ keys; then press [™] to continue.

Now bring the system to a second defined state (e.g. when measuring liquid level, container full).
Mait until the diaplace shall be atabilized, then press [w] to

Wait until the display value has stabilized; then press $\fbox{\sc point}$ to continue

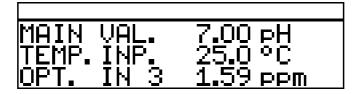
★ Set the displayed value to "Maximum" (usually 100%) with the ▼ and ▲ keys; then press ™ to continue.

The zero point and slope determined by the device are displayed.

★ Use the ^{Pem} key to accept the calibrated values or reject them with the ^{Em} key.

***** The device returns to measuring mode.

Calibration is complete


After rinsing, the sensor can again be used to take measurements.

11.2.3 Calibration end point

This example is based on a measurement of free chlorine. The input signal is provided by a corresponding transmitter.

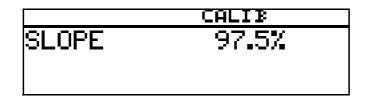
The transmitter is in "Measuring mode".

- The process must now be brought to the state that is as relevant as possible to the final value (e.g. when measuring chlorine, the required concentration).
- * Start the calibration, see "Ways to start the calibration", page 67.
- * Select the limit point calibration with the MM key.



* Wait until the display value has stabilized; then press Find to continue.

11 Calibrating a sensor with a standard signal



Set the displayed value to the measured reference value with the \bigtriangledown or \blacktriangle keys; then press \bowtie to continue.

The slope determined by the device is displayed.

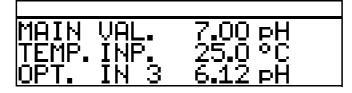
***** Use the read key to accept the value or the read key to reject it.

* The device returns to measuring mode.

MOTH HOL	7 00
MAIN VAL.	7.00 pH
TEMP. INP.	25.0 °C
ÓPT. IN 3	2.00 ppm
P-21 1 8 - 4172	LIVU PPIII

Calibration is complete

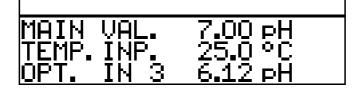
After rinsing, the sensor can again be used to take measurements.


11.3 pH operating mode

11.3.1 Zero point (1-point) calibration

This example is based on a glass combination electrode with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

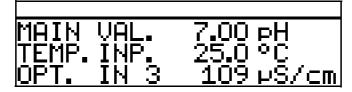

Perform calibration, see chapter 8.3 "Zero point (1-point) calibration", page 50.

11.3.2 2-point calibration

This example is based on a glass combination electrode with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

* Perform calibration, see chapter 8.4 "2-point calibration", page 51.


11.4 Conductivity operating mode

11.4.1 Calibration of the relative cell constant

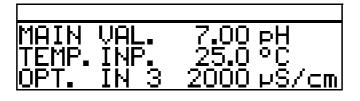
This example is based on a conductivity sensor with a connected two-wire transmitter.

The transmitter is in "Measuring mode".

- Immerse the conductivity sensor in a reference solution with a known conductivity.
- * Start the calibration, see "Ways to start the calibration", page 67.
- * Select REL. CELL CONST.
- **★** Press the ^{PGM} key.

* When the measured value is stable, press the RM key

* The measured conductivity value flashes on the display.


***** Use the \blacksquare or \blacksquare keys to set the value to the actual conductivity.

✤ Press the PGM key;

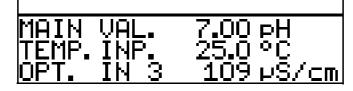
the relative cell constant determined by the device is displayed (as a %).

 ★ Use the PGM key to accept the temperature coefficient or the EMT key to reject it.

The current measurement value and the temperature are displayed.

Calibration is complete

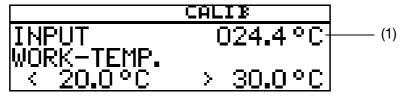
After rinsing, the sensor can again be used to take measurements.


11.4.2 Calibration of the temperature coefficient

Linear temperature coefficient

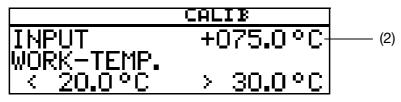
This example is based on a conductivity sensor with a connected two-wire transmitter.

The transmitter is in "Measuring mode".


* Immerse the conductivity sensor in the sample medium.

Start the calibration, see "Ways to start the calibration", page 67.

* Select "LINEAR TEMP. COEF.".


The current sensor temperature flashes in the display (1).

The working temperature must be at least 5 °C above or below the reference temperature (25.0 °C).

Enter the required working temperature and confirm your entry.
 The LC display now shows the selected working temperature (flashing) (2).

★ Press the rew key.

The conductivity (399 μ S/cm) at the current temperature (24.3 °C) now appears on the right of the LC display.

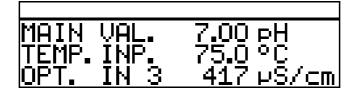
The temperatures T1 (25 °C) and T2 (70.0 °C) that have yet to be triggered are shown on the left.

- ★ Press the PGM key.
- * Heat the sample medium until the working temperature is reached.

During calibration, the rate of temperature change in the measurement solution must not exceed 10 $^{\circ}\text{C/min}.$

Calibration is also possible in the cooling process (with a falling temperature). It starts above the working temperature and ends below the working temperature.

As soon as the temperature of the sample medium exceeds T1 (25 °C), this is hidden on the display. The uncompensated conductivity at the current temperature is displayed on the right.



If the temperature of the medium exceeded T2 (73.0 $^{\circ}$ C), the device determines the temperature coefficient.

The LC display now shows the determined temperature coefficient as %/K.

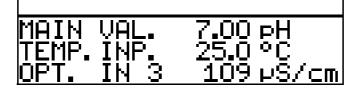
★ Use the PGM key to accept the temperature coefficient or the ENT key to reject it.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

With non-linear temperature coefficient (TEMP. COEF. CURVE)


This example is based on a conductivity sensor with a connected two-wire transmitter.

The non-linear temperature coefficient can **only** be calibrated with a rising temperature!

The start temperature **must be below** the configured reference temperature (usually 25 °C)!

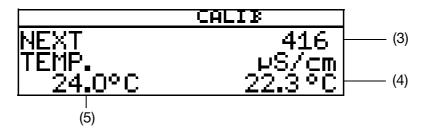
The "TEMP.COEF. CURVE" menu item is only displayed if a temperature sensor is connected and "TEMP.COEF. CURVE" is configured as the type of temperature compensation.

The transmitter is in "Measuring mode".

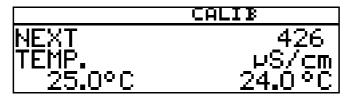
* Immerse the conductivity sensor in the sample medium.

Start the calibration, see "Ways to start the calibration", page 67.

★ Select "TEMP. COEF. CURVE " and press the Peril key.


* Enter the required start temperature (1) for the temp. coef. curve.

* Enter the required end temperature (2) for the temp. coef. curve.


- * Heat the sample medium continuously
 - (3) the current uncompensated conductivity
 - (4) the current temperature of the sample medium
 - (5) the first target temperature

During calibration, the rate of temperature change in the measurement solution must not exceed 10 $^\circ\text{C/min}.$

During the calibration process, the device displays values for the following five temperature interpolation points.

The end temperature has been reached

Use the periodic M key to accept the temperature coefficients or the $ext{int}$ key to reject the calibration result.

	CALIB
1 3.91 //K	2:3.67 //K
3 3.35 //K	4:3.12 //K
5 2.87 //K	6:2.51 //K

The LC display now shows the determined temperature coefficients as %/K.

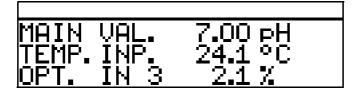
★ Use the PGM key to accept the temperature coefficients or the EMT key to reject the values.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

11.5 Concentration operating mode


11.5.1 Calibration of the relative cell constant

This example is based on a conductivity sensor with a connected two-wire transmitter.

The conductivity of a caustic solution is converted into a concentration value [%] by the device.

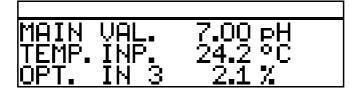
The transmitter is in "Measuring mode".

- Immerse the conductivity sensor in a sample medium with a known conductivity.
- * Start the calibration, see "Ways to start the calibration", page 67.
- ★ Press the Mey.

The measured conductivity value is displayed.

* Wait until the measurement value has stabilized.

★ Press the PGM key.


***** Use the \blacksquare and \blacksquare keys to set the value to the actual conductivity.

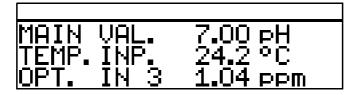
★ Press the Pem key; the relative cell constant determined by the device is displayed (as a %).

 ★ Use the PGM key to accept the relative cell constant or the EMT key to reject the values.

The transmitter is in "measuring mode" and displays the compensated conductivity of the solution.

Calibration is complete

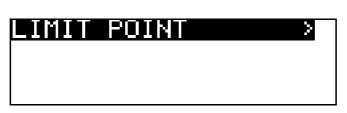
After rinsing, the sensor can again be used to take measurements.


11.6 Chlorine measurement operating mode, pHcompensated

11.6.1 Final value calibration

The pH signal and temperature signal are supplied via the main input, the chlorine signal (standard signal) via the optional input.

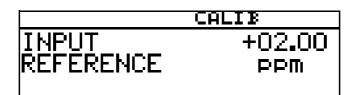
The transmitter is in "Measuring mode".



Calibrate pH sensor

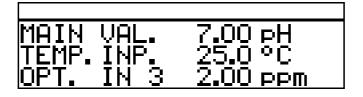
 Perform calibration, see chapter 8 "Calibrating a pH measurement chain", page 48.

Calibrate chlorine sensor


- The process must now be brought to the state that is as relevant as possible to the final value (e.g. when measuring chlorine, the required concentration).
- * Start the calibration, see "Ways to start the calibration", page 67.
- * Select the limit point calibration with the Em key.

* Wait until the display value has stabilized; then press Ref to continue.

Set the displayed value to the measured reference value with the \mathbf{V} or \mathbf{k} keys; then press \mathbf{k} to continue.



The slope determined by the device is displayed.

★ Use the Image key to accept the value or the Image key to reject it.

The device returns to measuring mode.

Calibration is complete

After rinsing, the sensor can again be used to take measurements.

12.1 General information

The characteristic data for the last 5 successful calibration processed are documented in the calibration logbook.

Calling up

The device is in Measurement mode. ***** Press the Read Key for longer than 3 seconds.

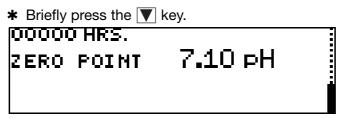
Select input

Briefly press the read key.

MAIN	INPUT		>
OPT.	INPUT	1	\rightarrow
OPT.	INPUT	2	>
OPT.	INPUT	3	>

Most recent successful calibration

The "time stamp" in the following screen printouts (top left, for example 11-06-06 12:02) only appear if optional slot 3 is fitted with the "Datalogger with interface RS485"!


★ Briefly press the ▼ key.

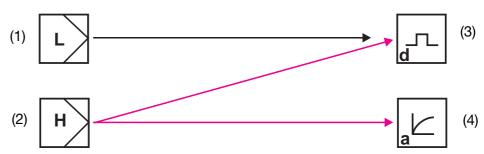
00000 HRS.	
ZERO POINT	6.95 pH 🚦
SLOPE ACID	100.7 %
SLOPE ALCA	101.7 %

Next most recent successful calibration

${\color{red} *}$ Briefly press the \blacksquare	key.	
OOOOO HRS. Zero point	7.05 pH	
SLOPE	98.4 %	

Next most recent successful calibration

13.1 General information



Apart from faulty installation, incorrect settings on the device may also affect the proper functioning of the subsequent process or lead to damage. You should therefore always provide safety equipment that is independent of the device and it should only be possible for qualified personnel to make settings.

13.2 Controller functions

"Software" control functions are assigned to "Hardware" outputs for this device.

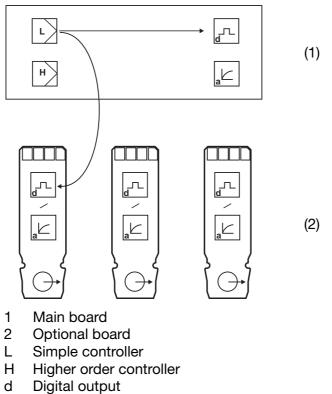
- 1 Software controller for "simple" switching functions (e.g. alarm control)
- 2 Software controller for "higher order" switching functions (e.g. PID controller)
- 3 "Switching" hardware output (e.g. relay)
- 4 "Continuous" hardware output (analog output)

13.2.1 Simple switching functions

Up to four switching functions can be set (limit value 1, 2, 3, 4) ADMINISTR. LEVEL/PARAMETER LEVEL/LIMIT VALUE CONTR./LIMIT VALUE x.

13.2.2 Higher order switching functions (PID)

Higher order switching functions are configured at the parameter level via the parameters of "Controller 1 or 2".

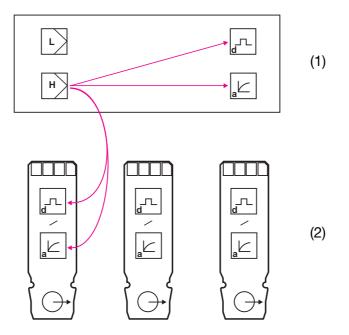

ADMINISTR. LEVEL/PARAMETER LEVEL/CONTROLLER/CONTROLLER 1(2)/ CONFIGURATION/CONTROLLER TYPE/e.g. PULSE LENGTHS

13.2.3 Typical operator level parameters

Binary outputs	Explanation
Signal source	
No signal	No switching function desired
Limit control 1 to 4	"Simple" switching functions
Alarm function (AF1)	Л
Alarm function (AF2)	T
Alarm function (AF7)	
Alarm function (AF8)	
Controller 1(2)	"Higher order" switching functions
Limit value	
Pulse width	
Pulse frequency	
Steady	
Modulating	

13.3 Software controllers and outputs

Simple controller functions


a Analog output

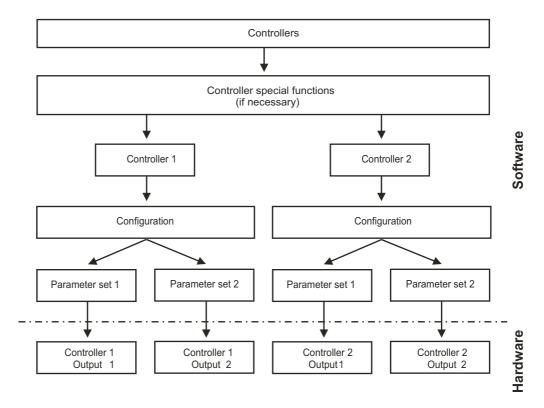
If "Simple controller functions" have been configured, only the digital outputs can be controlled!

The operator must configure which of the digital outputs will be controlled - the main board or optional board 1, 2 or 3 $\,$

Higher order controller functions

- 1 Main board
- 2 Optional board
- L Simple controller
- H Higher order controller
- d Digital output
- a Analog output

If "higher order controller functions" have been configured, both the digital outputs and the analog outputs can be controlled.


The operator must configure which of the outputs will be controlled - the main board or optional board 1, 2 or 3.

Additional explanations, see chapter 18.1 "Glossary", page 105.

13.4 Configuration of higher order controllers

13.4.1 Structure

13.5 Parameter sets

Different process steps may require different controller settings. The device offers the option of creating two parameter sets and then switching between them by means of a binary input.

Defining a parameter set

ADMINISTR. LEVEL/PARAMETER LEVEL/CONTROLLER 1(2)/ PARAMETER SET 1(2) see "Controllers", page 118.

Configuring parameter set switchover

ADMINISTR. LEVEL/PARAMETER LEVEL/BINARY INPUTS/BINARY INPUT 1(2)/PARAMET. SWITCHOVER

see "Binary inputs", page 117.

13 Controller

13.6 Sample configurations

13.6.1 Simple limit monitoring

Configuration

Limit monitoring

Limit value 1

Signal source: Switching function: Switching point : Hysteresis: Main value Alarm function (AF8) 6.50 pH 0.50 pH

Limit value 2

Signal source:	Main value
Switching function:	Alarm function (AF7)
Switching point :	8.50 pH
Hysteresis:	0.50 pH

Configuration of binary output, e.g. relay)

Binary outputs	
Binary output 1	
Signal source:	Limit monitoring 1
At calibration:	Standard operation
Error:	Inactive
HOLD mode:	Frozen
Turn-on delay:	0 seconds
Turn-off delay:	0 seconds
Wiper time:	0 seconds
Manual mode:	No simulation

Binary output 2

Signal source:	Limit monitoring 2
At calibration:	Standard operation
Error:	Inactive
HOLD mode:	Frozen
Turn-on delay:	0 seconds
Turn-off delay:	0 seconds
Wiper time:	0 seconds
Manual mode:	No simulation

13.6.2 Controller with PID behavior and pulse length output

Configuration of software controllers

Controller 1	
Configuration	
Controller type:	Pulse lengths
Controller actual value:	Main value
Stroke retransmission:	No signal
Additive disturbance:	No signal
Multiplicative disturbance:	No signal
Min./max. contact:	Min. contact
Inactive/active contact:	Active contact
HOLD mode	0 %
HOLD output:	0 %
Error:	0 %
Alarm control:	Off
Parameter set 1	
Min. setpoint:	As required
Max. setpoint:	As required
Setpoint:	6.50 pH
Proportional range:	As required
Reset time:	As required
Rate time:	As required
Period time:	As required
Output limit:	As required
Min. turn-on time:	As required
Alarm tolerance:	As required
Alarm delay:	As required

Controller 2

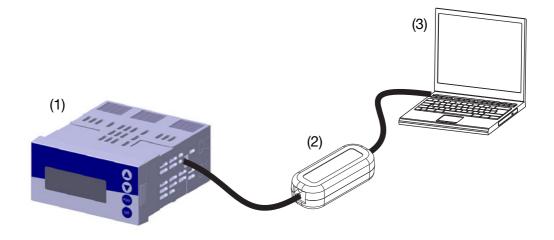
Configuration	
Controller type:	Pulse lengths
Controller actual value ¹ :	Main value
Stroke retransmission ¹ :	No signal
Additive disturbance ¹ :	No signal
Multiplicative disturbance ¹ :	No signal
Min./max. contact:	Max. contact
Inactive/active contact:	Active contact
HOLD mode	0 %
HOLD output:	0 %
Error:	0 %
Alarm control:	Off
Parameter set 1	
Min. setpoint:	As required
Max. setpoint:	As required
Setpoint:	8.50 pH
Proportional range:	As required
Reset time:	As required
Rate time:	As required
Period time:	As required
Output limit:	As required
Min. turn-on time:	As required
Alarm tolerance:	As required
Alarm delay:	As required

Configuration of binary output, e.g. relay)

Binary outputs	
Binary output 1	
Signal source:	Controller 1 output 1
Binary output 2	
Signal source:	Controller 2 output 1

¹ This parameter only appears if "Separate controllers" has been configured in special controller functions.

14.1 Configurable parameters


Both the setup program (00560380) and the PC interface cable with USB/TTL converter (00456352) are available as options and provide a convenient way to adapt the transmitter to meet requirements:

- Setting the measuring range.
- Setting the behavior of outputs when the measuring range is exceeded.
- Setting the functions of switching outputs K1 to K8.
- Setting the functions of the binary inputs.
- Setting a customized characteristic
- etc.

Data can only be transferred from or to the transmitter if it is supplied with voltage, see chapter 5 "Installation", page 13ff.

Connection

- (1) JUMO dTRANS 02 pH
- (2) PC interface cable with USB/TTL converter, Part no. 00456352
- (3) PC or notebook

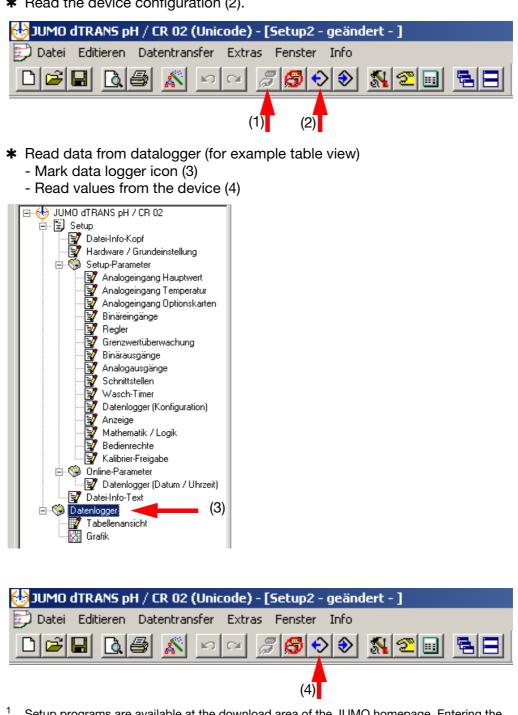
14.2 Documenting the device configuration

- * Start the setup program
- ***** Establish the connection to the device (1).

Read the device configuration (2).

🕹 JUMO dTRANS	5 pH / CR 02 (Unicode) - [Setup2 - geändert -]
🔛 Datei Editiero	en Datentransfer Extras Fenster Info
	18 <u>x 78</u> * 1
(3)	(1) (2)

The button "Print Preview" (3) generates (after selecting the menues to be documented) an image of the device configuration, that can be printed afterwards.


Datei-Info-Kopf: Gerähensme: dTRANS02 GerähensW-Version: 268.01.xx VDN:	Eistellungsdatum: Änder ungsdatum: Piogram m-Version	07.06.2011 07.06.2011 1.00J	
Kurzinka: Bearbeiter: Typenschlüssel: Auftrag: Zusatzinka:			
Hardware / Grundeins Hardwaretyp: pf//Redax Regier	stellung:		
Variante: Standard			
Grundeinstellung Sensar: Einheit:	pH Standard Elektrode pH		
Optionale Bestlickung Optionasteckplatz 1: Optionasteckplatz 2: Optionasteckplatz 3:	Analog-Ausgang Analog-Eingang Daten logger		
Analogeingang Haup pH / Redax Kampersationsquelle: Überwachung Bezugselektroden: Überwachung Gaselektrode: Filterzeit: Kalibrierimenvall: Differenzmessung: Netzfrequenz:	twert: Temperatur Eingeng Aus 20s 0 Tage Aus 90 Hz		
Analogeingang Temp Sensontyp: Filerzei: Manuelle Temperaturvargabe: Officer:	eratur: Kein Sensor 205 250 m 0.0 m 0.0 m		
Analogeingang Optio Analogeingang 2 Betrietzart: Komma: Einheit: Statierung Antang: Statierung Ende: Statierung Ende: Signabart: Filterzeit:	NSKarten: Linear XXxx g8/cm 0.00 µS/cm 99.99 µS/cm 90.20 mA 2.0s		
Searbailer. Gerällenare. dTM.RC202 Gerälle 204 Version. 203 Jl. oc Programm 204 Version. 1.00 J		Dikument. ErstelungsDatum. Artierung satetum. Saiter Gesomberten.	2ekupi - geändert - 07.08.2011 07.08.2011 173

14.3 Special features for "Data logger"

A special, free version of the Setup Software is available for reading the data logger¹. The functionality of this version, however, is limited to the ability of reading the data logger.

The license key for unlocking this version is: ACD4-CF60-AA94-84EC.

- * Start the setup program
- Establish the connection to the device (1).
- ★ Read the device configuration (2).

Setup programs are available at the download area of the JUMO homepage. Entering the license key turns the 30-day-trial version into an unlimited version for reading the data logger.

Auswahl der zu übertragenden Daten	×
Zu übertragende Daten	
■ Setup-Daten	
✓ D atenlogger	
Alles auswählen Auswahl aufheben OK Abbrechen	

* Export data (for processing in an external program).

🔂 JUMO dTRANS pH / CR 02 (Unicode) - [Setup2 - geändert -]						
😥 Datei Editieren Datentransfer Extras Fenster Info						

	Geräteken	nung: ÿÿÿÿ	<i></i>	ÿ										
	Datum	Zeit	Analogwert 1	Einheit 1	Analogwert 2	Einheit 2	Analogwert 3	Einheit 3	Analogwert 4	Einheit 4	Binärausgang 1	Binärausgang 2	Binärausgang 3	Binärausgang 4
1	07.06.2011	14:32:01	7.021104	pН	25	°C	Ō	%	Ō	%	0	0	0	0
2	07.06.2011	14:31:01	7.020878	pН	25	°C	0	%	0	%	0	0	0	0
3	07.06.2011	14:30:01	7.021447	pН	25	°C	0	%	0	%	0	0	0	0
4	07.06.2011	14:29:01	7.020861	pН	25	°C	0	%	0	%	0	0	0	0
5	07.06.2011	14:28:01	7.020949	pН	25	°C	0	%	0	%	0	0	0	0
6	07.06.2011	14:27:01	7.020753	pН	25	°C	0	%	0	%	0	0	0	0
7	07.06.2011	14:26:01	7.020559	pН	25	°C	0	%	0	%	0	0	0	0
8	07.06.2011	14:25:01	7.020248	pН	25	°C	0	%	0	%	0	0	0	0
9	07.06.2011	14:24:01	7.020679	pН	25	°C	0	%	0	%	0	0	0	0
10	07.06.2011	14:23:01	7.020659	pН	25	°C	0	%	0	%	0	0	0	0
11	07.06.2011	14:22:01	7.020184	nH	25	•C	0	~	0	%	0	0	0	0
12	07.06.2011	14:21:01	7.020 Daten	logger	Speichern			×	0	%	0	0	0	0
13	07.06.2011	14:20:01	7.020						0	%	0	0	0	0
14	07.06.2011	14:19:01	7.020						0	%	0	0	0	0
15	07.06.2011	14:18:01	7.020 Bitt	e Gebe	n Sie ein Trennzei	chen ei	n:		0	%	0	0	0	0
16	07.06.2011	14:17:01	7.019						0	%	0	0	0	0
17	07.06.2011	14:16:01	7.020 1	Fabulati	or	•			0	%	0	0	0	0
18	07.06.2011	14:15:01	7.020 E	enutze	rdefiniert	_	,		0	%	0	0	0	0
19	07.06.2011	14:14:01		emikola					0	%	0	0	0	0
20	07.06.2011	14:13:01	7.020	abulato	r				0	%	0	0	0	0
21	07.06.2011	14:12:01	7.019						0	%	0	0	0	0
22	07.06.2011	14:11:01	7.019		Castabana		Schliessen	1	0	%	0	0	0	0
23	07.06.2011	14:10:01	7.019		Speichern	uncer	Schliessen		0	%	0	0	0	0
24	07.06.2011	14:09:01	7.021						0	%	0	0	0	0
25	07.06.2011	14:08:01	7.02600	рп	2.0				0	%	0	0	0	0
26	07.06.2011	14:07:01	7.020673	pН	25	°C	0	%	0	%	0	0	0	0

Problem	Possible cause	Action
No measurement display or current output	There is no voltage supply	Check the voltage supply
Measurement display 0000 or current output 4 mA	Sensor not immersed in medium; level in container too low	Top up the container
	Flow-through fitting is blocked	Clean the flow-through fitting
	Sensor faulty	Replace the sensor
Incorrect or	Sensor faulty	Replace the sensor
fluctuating measurement display	Sensor positioning incorrect	Choose another installation location
	Air bubbles	Optimize assembly
MAIN VALUE INPUT OVERRANGE	Measurement overrange	
MAIN VALUE INPUT UNDERRANGE	Measurement underrange	Choose a suitable measuring
ALARH MEASURING 8888 27.4°C PH	Main input: Measurement range "out of range"	range
MAIN INPUT COMPENS. RANGE	Compensation range has been left	
TEMPERATURE INPUT OVERRANGE	Measurement overrange	
TEMPERATURE INPUT UNDERRANGE	Measurement underrange	Choose a suitable measuring range
ALARM MEASURING 8888 8888 °C PH	Temperature input: Measurement range "out of range"	
OPTION INPUT 1. COMPENS. RANGE	Compensation range has been left	Choose a suitable measuring
OPTION INPUT 1. OUT OF RANGE	Temperature input: Measurement range "out of range"	range
GLASS ELECT. IMPED. TOO HIGH	Coating Wire/Cable break Aging	Clean (glass) electrode. Replace (glass) electrode.

15 Eliminating errors and faults

GLASS ELECT. IMPED. TOO LOW	Membrane glass damaged	Replace (glass) electrode.
REF.ELECT. IMPED. TOO HIGH	Coating	Clean reference electrode. Replace reference electrode.
DEPENDENT PARAME- TERS ADJUSTED	Configuration change	ОК
DATALOGGER IS DELETED	Configuration change	ОК
LEVEL LOCKED	Inhibit via binary contact	Check configuration and unlock if necessary
PARAMETER LOCKED	Do not release	If appropriate release in the release level
WRONG PASSWORD		Test
KEYPAD LOCKED	Inhibit via binary contact	Check configuration and unlock if necessary
CONFIGURATION RE-ESTABLISHED	Cancel in basic setting	ОК
ERROR PROFIBUS		Check hardware
UNDULY HARDWARE EQUIPMENT		Check fitting, adjust if necessary
ERROR TIMER TIME RE-ADJUSTMENT	device had no voltage supply for a very long time	Establish voltage supply Set the datalogger time

Inputs (main board)

Main input	Measuring range/control range	Accuracy	Effect of temperature
pH value	-2 to +16 pH	≤ 0.3 % of range	0.2 %/10 K
Redox potential	-1500 to +1500 mV	≤ 0.3 % of range	0.2 %/10 K
NH ₃ (ammonia)	0 to 9999 ppm	≤ 0.3 % of range	0.2 %/10 K
Secondary input			
Temperature Pt100/1000	-50 to +250 °C ^a	≤ 0.25 % of range	0.2 %/10 K
Temperature NTC/PTC	0.1 to 30 k Ω Entry via table with 20 value pairs	\leq 1.5 % of range	0.2 %/10 K
Standard signal	0(4) to 20 mA or 0 to 10 V	0.25 % of range	0.2 %/10 K
Resistance transmitter	Minimum: 100 Ω Maximum: 3 kΩ	±5 Ω	0.1 %/10 K

^a Selectable in °F.

Resistance thermometer inputs (optional board)

Designation	Connection type	Measuring range	Measuring accuracy Effect		Effect of ambient	
			3-wire/4-wire	2-wire	temperature	
Pt100 DIN EN 60751 (factory-set)	2-wire/3-wire 4-wire	-200 to +850 °C	≤ 0.05 %	≤ 0.4 %	50 ppm/K	
Pt1000 DIN EN 60751 (factory-set)	2-wire/3-wire 4-wire	-200 to +850 °C	≤ 0.1 %	≤ 0.2 %	50 ppm/K	
Sensor lead resistance	Maximum 30 Ω per	Maximum 30 Ω per line with three- and four-wire circuit				
Measurement current	approx. 250 µA	approx. 250 μA				
Lead compensation		Not required for three- and four-wire circuit. With a 2-wire circuit, lead resistance can be compensated in the software by correcting the process value.				

Standard signals inputs (optional board)

Designation	Measuring range	Measuring accuracy	Ambient temperature effect
Voltage	0(2) to 10 V 0 to 1 V Input resistance _E > 100 k Ω	≤ 0.05 %	100 ppm/K
Electrical current	0(4) to 20 mA, Voltage drop ≤ 1.5 V	≤ 0.05 %	100 ppm/K
Resistance transmitter	Minimum: 100 Ω Maximum: 4 k Ω	±4 Ω	100 ppm/K

Temperature compensation

Measurement variable	Compensation	Range ^a
pH value	Yes	-10 to +150 °C
Redox potential	No	Not applicable
NH ₃ (ammonia)	Yes	-20 to +50 °C

^a Note the sensor operating temperature range!

Measuring circuit monitoring

Inputs		Overrange/underrange	Short circuit	Broken lead
pH value		Yes	Yes ^a	Yes ^a
Redox pote	ential	Yes	No	No
NH ₃ (ammo	onia)	Yes	No	No
Temperatu	re	Yes	Yes	yes
Voltage	2 to 10 V 0 to 10 V	Yes Yes	Yes No	Yes No
Current	4 to 20 mA 0 to 20 mA	Yes Yes	Yes No	Yes No
Resistance	transmitter	No	No	Yes

^a The sensor can be monitored for short circuit and broken lead during the pH measurement by activating the impedance measurement.

Impedance measurement

The impedance measurement can optionally be activated.

Because it depends on some boundary parameters, note the following points:

- Only glass-based sensors are permitted.
- The sensors must be connected directly to the transmitter.
- Only one impedance converter may be used in the measuring circuit!
- The maximum permissible line length between sensor and transmitter is 10 m.
- Liquid resistances are included directly in the measurement results.
 - We therefore recommend activating the measurement in liquids beginning with a minimum conductivity of about 100 µS/cm.

Binary input

Activation	Floating contact is open: Floating contact is closed:	function is not active function is active		
	Key lock, manual mode, HOLD, HOLD inverse, alarm suppression, freeze measured value, level lock, reset partial quantity, reset total quantity, parameter set changeover			

Controller

	Limit comparators, limit controllers, pulse length controllers, pulse frequency controllers, modulating controllers, continuous controllers		
Controller structure	P/PI/PD/PID		

Outputs

Relay (changeover) Contact rating Contact service life	Basic board	5 A at AC 240 V resistive load 350,000 operations at nominal load/750,000 operations at 1 A
Voltage supply for 2-wire transmitter	Basic board	Electrically isolated, non-controlled DC 17 V at 20 mA, open-circuit voltage approx. DC 25 V
Voltage supply for ISFET	Optional board	DC ±5 V; 5 mA
Voltage supply for inductive proximity switch	Optional board	DC 12 V; 10 mA
Relay (changeover) Contact rating Contact service life	Optional board	8 A at AC 240 V resistive load 100,000 operations at nominal load/350,000 operations at 3 A
Relay SPST (normally open) Contact rating Contact service life	Optional board	3A at AC 240 V resistive load 350,000 operations at nominal load/900,000 operations at 1 A
Solid state relay Contact rating Protective circuit	Optional board	1 A at 240 V Varistor
PhotoMOS [®] relay	Optional board	$U \le AC/DC 50 V$ I $\le 200 \text{ mA}$
Voltage Output signals Load resistance Accuracy	Optional board	0 to 10 V or 2 to 10 V $R_{load} \ge 500 \Omega$ $\le 0.5 \%$
Electrical current Output signals Load resistance Accuracy	Optional board	0 to 20 mA or 4 to 20 mA $R_{load} \le 500 \Omega$ $\le 0.5 \%$

Display

Туре

LC graphic display, blue with background lighting, 122 × 32 pixels

Electrical data

Voltage supply	AC 110 to 240 V +10/-15 %; 48 to 63 Hz or			
(switch-mode PSU)	AC/DC 20 to 30 V; 48 to 63 Hz			
Electrical safety	To DIN EN 61010, Part 1			
	overvoltage category II, pollution degree 2			
Power draw	Approx. 14 VA (20 A fuse max.)			
Data backup	EEPROM			
Electrical connection	On the back via screw terminals,			
	conductor cross-section up to max. 2.5 mm ²			
Electromagnetic Compatibility	DIN EN 61326-1			
(EMC)				
Interference emission	Class A			
Interference immunity To industrial requirements				

Enclosure

Enclosure type	Plastic enclosure for panel mounting to DIN IEC 61554 (indoor use)			
Depth behind panel	90 mm			
Ambient temperature Storage temperature	-5 to +55 °C -30 to +70 °C			
Climatic rating	Rel. humidity ≤ 90 % annual mean, no condensation			
Site altitude	Up to 2000 m above sea level			
Operating position	Horizontal			
Enclosure protection In the panel enclosure In the surface-mounted enclosure	To DIN EN 60529 Front IP65, rear IP20 IP65			
Weight (fully fitted)	About 380 g			

Interface

Modbus				
Interface type	RS422/RS485			
Protocol	Modbus, Modbus Integer			
Baud rate	9600, 19200, 38400			
Device address	0 to 255			
Max. number of nodes	32			
PROFIBUS-DP				
Device address	0 to 255			

Approvals/marks of conformity

Mark of conformity	Testing laboratory	Certificates/certification numbers	Test basis	valid for
c UL us	Underwriters Laboratories		UL 61010-1 CAN/CSA-C22.2 No. 61010-1	Type 202551/01

Caution:

The device **must** be de-energized on the input and output sides! Optional boards must only be retrofitted by qualified specialists.

ESD:

Optional boards can be damaged be electrostatic discharge. You must therefore prevent electrostatic charges from accumulating during installation and removal. Optional boards should be retrofitted at a grounded workstation.

17.1 Identifying an optional board

The packaging of the optional board is identified by a part number.

Optional board	Code	Part no.	Board view
Analog input (universal)	1	00442785	
Relay (1× changeover)	2	00442786	
Relay (2× NO) This board must only be inserted in optional slot 1 or 3!	3	00442787	
Analog output	4	00442788	
2 PhotoMOS [®] relays	5	00566677	

17 Retrofitting optional boards

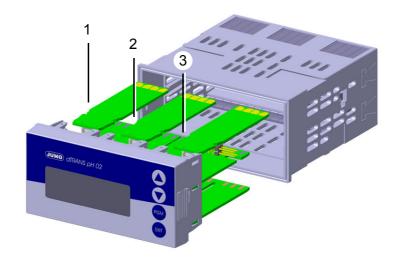
Optional board	Code	Part no.	Board view
Solid state relay 1 A	6	00442790	
Voltage supply output DC ±5 V (e.g. for ISFET)	7	00566681	
Voltage supply output DC 12 V (e.g. for inductive proximity switch)	8	00566682	
Interface - RS422/485	10	00442782	
Datalogger with interface RS422/485 and real-time clock This circuit board may only be inserted into option slot 3!	11	00566678	
PROFIBUS-DP interface This circuit board may only be inserted into option slot 3!	12	00566679	

Note:

The option boards that the device recognizes are listed in "Device info" (see chapter 6.5.11 "Device info", page 34).

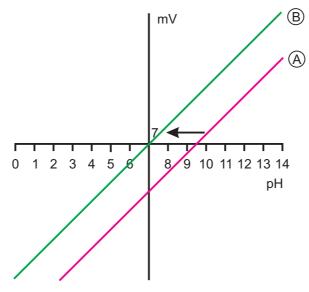
17 Retrofitting optional boards

17.2 Removing a plug-in module


(1) Squeeze the front panel together by the left and right sides and remove the plug-in module.

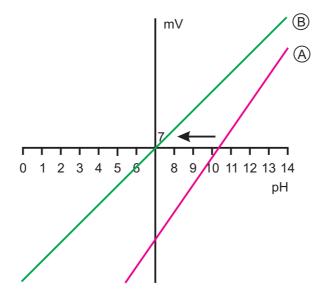
17.3 Inserting a plug-in module

Caution:


No "3" relays (2× SPST/normally open) may be inserted in slot 2!

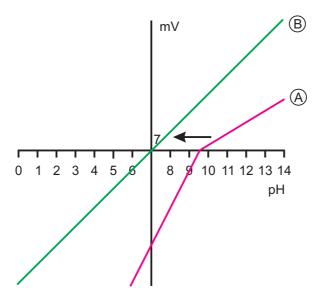
- (1) Slot 1 for optional board
- (2) Slot 2 for optional board
- (3) Slot 3 for optional board
- (1) Push the optional board into the slot until it locks in place.
- (2) Push the device plug-in into the enclosure until it locks in place.

18.1 Glossary


Zero point (1-point) calibration

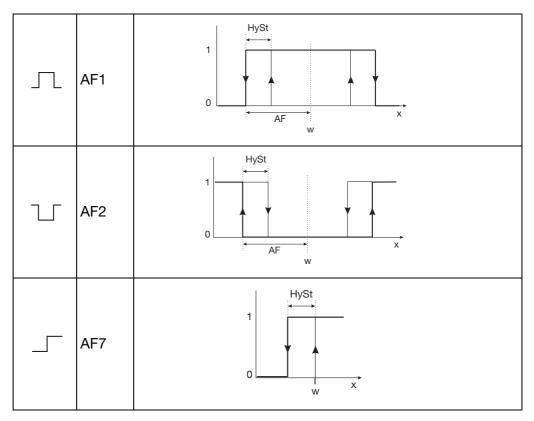
With one-point offset calibration, the zero point of the pH combination electrode is calculated, see chapter 8.3 "Zero point (1-point) calibration", page 50.

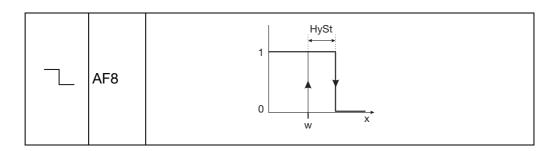
Recommended only for special applications, such as ultra-pure water.


2-point calibration

With two-point calibration, the zero point and slope of the combination electrode are calibrated, see chapter 8.4 "2-point calibration", page 51. This is the recommended calibration for most sensors.

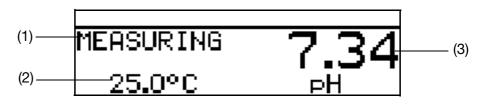
18 Appendix


3-point calibration

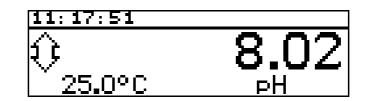


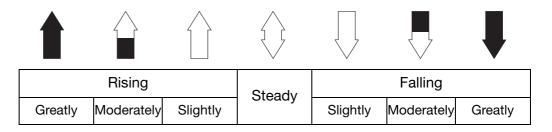
In three-point calibration, the zero point and the slope are calibrated in the acidic range and the slope is calibrated in the alkaline range, see chapter 8.5 "3-point calibration", page 54.

This calibration is recommended with heightened requirements for accuracy.


Limit value (alarm) function of the binary outputs

Display of measured values STANDARD

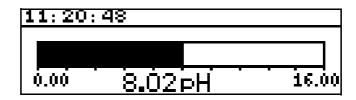

The measurement value, measurement variable and temperature of the measuring material are shown in standard display.



- (1) Operating mode
- (2) Display bottom (temperature input)
- (3) Display top (analog input measurement value)

Display of measured values TENDENCY

The operator can quickly see the direction in which the measurement is changing.


The measurement tendency (trend) is calculated over the last 10 measurement values.

So with a sampling interval of 500 ms, the last 5 seconds are considered.

18 Appendix

Display of measured values BARGRAPH

Values of the main inputs, input options or math channels (signal source) can be represented as a variable bar (a bar graph).

Scaling the bar

- * Activate "BARGRAPH" as the display of measured values.
- ★ Select "SCALE START" with **▼**.
- * Confirm the selection with PGM.
- ***** Use \blacksquare and \blacksquare to enter the lower limit of the range to be displayed.
- * Confirm the selection with PGM.
- ★ Select "SCALE END" with **▼**.
- ***** Use \mathbf{V} or $\mathbf{\Lambda}$ to enter the upper limit of the range to be displayed.
- * Confirm the selection with PGM.

To return to measuring mode: Press the key repeatedly or wait for a "timeout".

Measurement display type TREND CHART

Values of the main inputs, input options or math channels (signal source) can be represented as a graph.

The current values appear to the right on the screen.

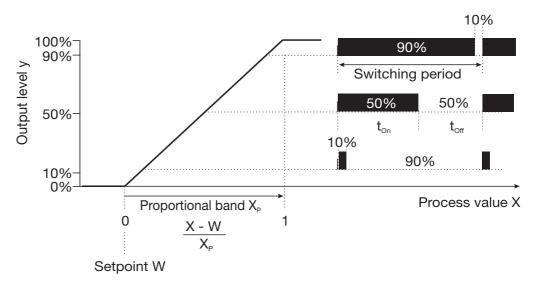
Scaling the display

- * Activate "TREND CHART" as the display of measured values.
- ★ Select "SCALE START" with **▼**.
- * Confirm the selection with PGM.
- ***** Use \blacksquare and \blacksquare to enter the lower limit of the range to be displayed.
- * Confirm the selection with PGM.
- ★ Select "SCALE END" with **▼**.
- ***** Use \mathbf{V} or $\mathbf{\Lambda}$ to enter the upper limit of the range to be displayed.
- ★ Confirm the selection with PGM.

To return to measuring mode: Press the \Box key repeatedly or wait for a "timeout".

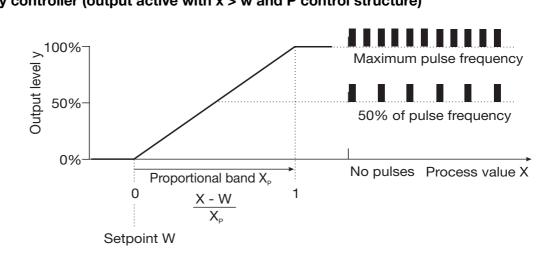
Display of measured values LARGE DISPLAY

Values of the main inputs, input options or math channels (signal source) can be displayed in large format.


Display of measured values 3 MEAS. VALUES

Three values of the main inputs, input options or math channels (signal source) can be displayed simultaneously.

The position of the value to be displayed can be set to "Top", "Center" or "Bottom".


11:43:59	
HAUPTWERT	6.02 pH
OPT.IN 2	5.00 pH
TEMP.EIN.	25.0 °C

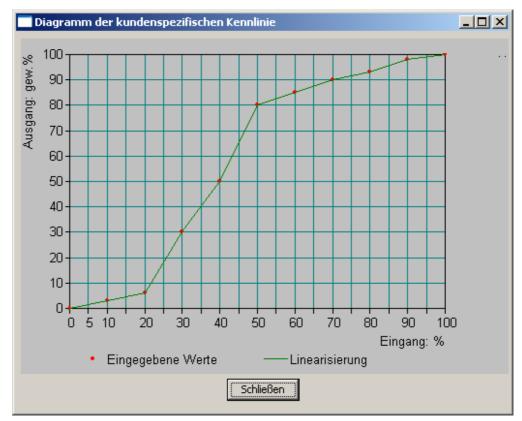
Pulse length controller (output active with x > w and P control structure)

If actual value x exceeds setpoint W, the P controller will control in proportion to the control deviation. When the proportional range is exceeded, the controller operates with an output level of 100 % (100 % clock ratio).

Pulse frequency controller (output active with x > w and P control structure)

If actual value x exceeds setpoint W, the P controller will control in proportion to the control deviation. When the proportional range is exceeded, the controller operates with an output level of 100% (maximum switching frequency).

Calibration timer


The calibration timer indicates (on request) a required routine calibration. The calibration timer is activated by entering the number of days that must expire before there is a scheduled re-calibration (specified by the system or the operator).

Customer specs. table

In this mode, the input value can be displayed based on a table (max. 20 value pairs). This function is used to display and linearize non-linear input variables. Values can only be entered in the table using the optional setup program.

Cust. specs. characteristic

In this mode, the device can model a monotonically increasing input variable to any output value.

The optional setup program is used to enter the requisite value table.

	Eingang	Ausgang	Hinweis
	30	30	Bei der kundenspezifischen Tabelle können Sie maximal 20
5	40	50	Stützstellen in die Tabelle eintragen.
;	50	80	
7	60	85	Wertebereich Eingangsgröße: 0.00 100.00 %
8	70	90	Wertebereich Ausgangsgröße: -999.900 999.900 gew.%
9	80	93	Bitte beachten Sie, daß die Eingangsgrößen in ihrem Wert
10	90	98	ansteigen müssen.
11	100	100	
12			
13			
14			
15			
16			
17			

Min./max. value memory

This storage records the minimum and maximum input quantities that have occurred. This information can be used, for example, to assess whether the design of the connected sensor is suitable for the values that actually occur.

The max./min. value memory can be reset,

see chapter 6.7.6 "Delete min/max values", page 37ff.

Temperature compensation

The pH value of a measurement solution depends on the temperature. Since the pH value is not always measured at the reference temperature, the device is able to perform a temperature compensation.

The sensor signal for the ammonia measurement is temperature-dependent. The device can perform temperature compensation.

The redox potential of a measurement solution is **not** temperature-dependent! Temperature compensation is not required.

Special controller functions: Separate controllers

This function is normally deactivated (factory setting or select "No").

In the deactivated state, the software prevents the two controller outputs from being able to work "against each other". So, for example, it is not possible to dose acid and lye at the same time.

If the controllers are separate ("Yes" selection), each controller can be freely configured.

Switch-off of the I-component

This function is normally deactivated (factory setting or select "No").

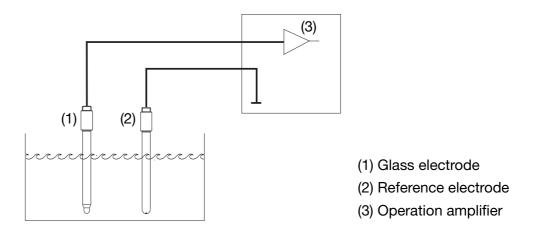
In the deactivated state, the controller works in accordance with general controller theory.

When I-component switch-off is activated ("Yes" selection), the part of the output level that can be traced back to the I-component is set to zero when the setpoint is reached.

This can be useful with mutual neutralization (acid and lye dosing both possible) in one treatment tank.

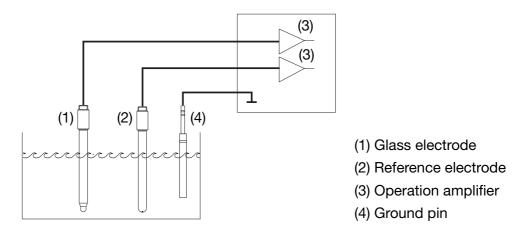
Datalogger

Recording duration = about 10 hours with a storage interval of 1 second


Recording duration = about 150 days with a storage interval of 300 seconds

Asymmetrical connection of pH electrodes

Typically pH electrodes are connected asymmetrically to the transmitter. The connection corresponds exactly to the structure of a pH electrode in terms of impedance.


For the asymmetrical connection, the glass electrode is connected to the electronics with a high impedance and the reference electrode is connected with a low impedance. Most transmitters are designed for this connection type.

For both asymmetrical and symmetrical connections, the input impedance of the transmitter is about 100 times greater than the impedance of the connected glass electrode. The impedance of a glass electrode may be as much as 1000 MOhm.

Symmetrical connection of pH electrodes

The symmetrically high-impedance input is an alternative way to connect pH electrodes to the transmitter. In this case both the glass and the reference electrode are connected to the transmitter with high impedance. With this type of connection, it is essential to connect the liquid junction potential to the transmitter as well.

Even difficult electrical environmental conditions can be compensated for with the symmetrical connection.

For example, if a poorly insulated electric stirrer motor is directing a residual current into the sample, this will result in a shift in the potential relative to systems ground.

With the normal asymmetrical connection, a residual current can then flow through the coupling capacitances (which are present in all devices) to systems ground, thereby causing a measurement error.

With a symmetrical connection, both inputs are directed via operation amplifiers to the device electronics. These operation amplifiers block the residual current (to a certain degree) and a measuring error is prevented.

Impedance monitoring

Impedance monitoring of glass pH combination electrodes places high demands on the transmitter electronics. The measurement required for this purpose takes place at the same time the main measured value is recorded. To minimize the electrode load, a response time of up to one minute is possible.

With an asymmetrical connection of glass and reference electrode, the overall impedance can be monitored.

Monitoring of the reference electrode is not recommended, since the measured value is difficult to interpret.

The impedance measurement depends on the cable material, the line length and the components used. JUMO special lines for pH measurements are limited in length to 10 m.

If ISFET sensors or impedance converters are used, impedance monitoring is not possible.

If impedance monitoring responds, the controller switches to the "HOLD" state and the measured value is set to "invalid". The analog outputs and limit switches respond according to their configuration in case of error.

This note applies as of software version 268.02.04.

Wash timer

The wash timer can be used to implement automated sensor cleaning. To do this, the function is assigned to a switching output.

The cycle time (cleaning interval) can be adjusted in the range from 0.0 to 240.0 hours.

A cycle time of "0.0" means the wash timer is deactivated.

The wash time (cleaning duration) is adjustable from 1 to 1800 seconds.

During the wash time the controller goes into the HOLD state, which is maintained for 10 seconds after completion of the wash time. A sensor calibration within the cycle time restarts the wash timer.

Parameter block switching

Some processes (different process steps) benefit from having two complete parameter blocks available.

Defining of the parameter blocks see chapter 13.5 "Parameter sets", page 89.

Activation of the predefined parameter blocks occurs over the binary input.

18.2 Parameters of the User level

When there are numerous device parameters to configure, it is advisable to make a note in the table below of all the parameters to be changed and to work through these parameters in the given order.

The following list shows the maximum number of parameters that can be modified.

Some of these parameters will not be visible (and therefore not editable) for your particular device, depending on the configuration.

Parameter	Selection/value range	New setting
	Factory setting	
Input pH/redox		
Zero point	5.00 to 7.00 to 9.00 or	
	-9999.99 to 0.00 to +9999.99 mV	
Slope - acidic	xx.xx to xx.xx to xx.xx %	
Slope - alkaline	xx.xx to xx.xx to xx.xx %	
Temperature	Temperature input	
compensation source	Option input 1	
	Option input 2	
	Option input 3	
	Manual temperature input	
Monitoring of the	Off	
reference electrode	On	
Glass electrode	Off	
monitoring	On	
Filter time constant	0.0 to 2.0 to 25.0 seconds	
Calibration interval	0 to 99 days (0 = timer not active)	
Differential measurement	Off	
	Main input - (minus) Option input 1	
	Main input - (minus) Option input 2	
	Main input - (minus) Option input 3	
	Option input 1 - (minus) Main input	
	Option input 2 - (minus) Main input	
	Option input 3 - (minus) Main input	
Supply frequency	50 Hz	
	60 Hz	
Temperature input		
Temperature sensor	No sensor	
	Pt100	
	Pt1000	
	Cust. specs.	
	0 to 20 mA	
	4 to 20 mA	
	0 to 10 V	
	2 to 10 V	
	Resistance transmitter	

Parameter	Selection/value range	New setting
	Factory setting	
Unit	°C/°F	
onne	%	
	Without unit	
	Cust. specs.	
Scaling start	-100.0 to 0.0 to 499.9°C	
Scaling end	-99.9 to 100.0 to 500.0°C	
Filter time constant	0.0 to 2.0 to 25.0 seconds	
Manual temperature	-99.9 to 25.0 to +99.9°C	
Offset	-99.9 to 0.0 to +99.9°C	
Input options		
Analog inputs 1 to 3		
Operating mode	Off	
	Linear	
	Temperature	
	pH measurement	
	Conductivity	
	Concentration	
	Cust. specs.	
	Stroke feedback	
	Chlorine, pH-compensated	
Signal type	0 to 20 mA	
	4 to 20 mA	
	0 to 10 V	
	2 to 10 V	
	0 to 1 V	
	Pt100	
	Pt1000	
	Cust. specs.	
Connection type	2-wire	
	3-wire	
	4-wire	
Display format	XXXX	
	XXX.x	
	XX.xx	
	X.xxx	
Unit	μS/cm	
	mS/cm	
	kΩ*cm	
	MΩ*cm	
	None	
	Cust. specs.	
	mV	
	pH	
	%	
	ppm	
	mg/l	
Scaling start	-9999 to +9998	
Scaling end	-9998 to + 9999	

Parameter	Selection/value range	New setting
	Factory setting	i tott cotting
Temperature	Temperature input	
compensation source	Option input 1	
	Option input 2	
	Option input 3	
	Manual temperature	
pH compensation source	Main input	
	Option input 1	
	Option input 2	
	Option input 3	
Temperature	None	
compensation	Linear	
•	TC graph	
	Natural waters	
	ASTM D1125 neutral	
	ASTM D1125 acidic	
	ASTM D1125 alkaline	
	NaOH 0 to 12 %	
	NaOH 25 to 50 %	
	HNO ₃ 0 to 25 %	
	HNO ₃ 36 to 82 %	
	H ₂ SO ₄ 0 to 28 %	
	$H_2^{2}SO_4^{3}$ 36 to 85 %	
	H ₂ SO ₄ 92 to 99 %	
	HCI 0 to 18 %	
	HCI 22 to 44 %	
Reference temperature	15.0 to 25.0 to 30.0 °C	
Filter time constant	0.0 to 2.0 to 25.0 seconds	
Relative cell constant	20.0 to 100.0 to 500.0 1/cm	
Temperature coefficient	0.00 to 2.20 to 8.00 1/cm	
Zero point	-9999 to 0 to +9999	
Slope	-999.9 to 100.0 to +999.9%	
Binary inputs		
Binary input 1 or 2		
Function	No function	
	Manual mode	
	Hold mode	
	Hold mode inverse	
	Alarm stop	
	Freeze measured value	
	Key lock	
	Lock levels	
	Flow rate measurement	
	Reset day counter	
	Reset total counter	
	Parameter set switchover	

Parameter	Selection/value range	New setting
	Factory setting	0
Controllers		
Controller 1 or 2		
Parameter set 1 or 2		
Min. setpoint	-2.00 to 0.00 to 16.00 pH	
Max. setpoint	-2.00 to 16.00 to 16.00 pH	
Setpoint	-2.00 to- 0.00 to 16.00 pH	
Setpoint 2	-2.00 to 0.00 to 16.00 pH	
Proportional range	0.00 to 99.99 pH	
Reset time	0.00 to 9999 s	
Derivative time	0.00 to 9999 s	
Period time	2.00 to 60.0 to 999.9 s	
Hysteresis	0.00 to 1.00 to 9.00 pH	
On-delay	0.00 to 999.5 s	
Delayed release	0.00 to 999.5 pH	
Output limit	0 to 100 %	
Min. turn-on time	0.20 to 0.50 to 99.50 s	
Actuator time	10 to 60 to 3000 s	
Max. pulse frequency	1 to 60 to 80 1/s	
Alarm tolerance	0.00 to 1.00 - 9.00 pH	
Alarm delay	0.00 to 9999 s	
Configuration		
Controller type	Off	
	Limit value	
	Pulse lengths	
	Pulse frequency	
	Continuous	
	Modulating	
Controller actual value	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated Math 1	
	Math 2	
	Differential signal	

Parameter	Selection/value range	New setting
	Factory setting	3
Stroke retransmission	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Additive disturbance	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Multiplicative disturbance	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
Min/max contact	Min contact	
	Max contact	
Make/break contact	Make contact	
Make/Dreak contact	Break contact	
Hold mode		
	100 %	
	Frozen	
Hold roa, ratio	Hold output	
Hold reg. ratio	0 to 100%	
Error	0%	
	100 %	
	Frozen	
	Hold output	

Parameter	Selection/value range	New setting
	Factory setting	
Alarm control	Off	
	On	
Controller special func	tions	-
I-switch-off	Inactive (the controller is working normally)	
	Active (special behavior)	
Separate controllers	No	
	Yes	
Manual mode	Locked	
	Coding	
	Switching	
Limit value control		
Limit values 1 to 4		
Signal source	No signal	
	Main value	
	Not comp. Main value Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2 Setpoint 2 controller 2	
Switching function	Alarm function (AF1)	
ownering fariotion		
	Alarm function (AF2)	
	Alarm function (AF7)	
	Alarm function (AF8)	
Switching point	2.00 to 0.00 to 16.00 pH	
Hysteresis	0.00 to 9.00 pH	

Parameter	Selection/value range	New setting
	Factory setting	
Binary outputs		
Binary outputs 1 to 8		
Signal source	No signal	
- J	Limit value control 1	
	Limit value control 2	
	Limit value control 3	
	Limit value control 4	
	Controller 1 output 1	
	Controller 1 output 2	
	Controller 2 output 1	
	Controller 2 output 2	
	Controller alarm 1	
	Controller alarm 2	
	Controller alarm	
	Sensor warnings	
	Sensor error	
	Warnings and errors	
	Calibration timer	
	Wash timer	
	Logic 1	
	Logic 2	
	Autorange	
At calibration	Standard operation	
	Inactive	
	Active	
	Frozen	
Error	Inactive	
	Active	
	Frozen	
Hold mode	Inactive	
	Active	
	Frozen	
-	Standard operation	
Switch-on delay	0.0 to 3600 s	
Switch-off delay	0.0 to 3600 s	
Pulse time ^a	0.0 to 3600 s	
Manual mode	No simulation	
	Inactive	
	Active	

Parameter	Selection/value range	New setting
	Factory setting	C C
Analog outputs		
Analog outputs 1 to 3		
Signal source	No signal	
	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Signal type	0 to 20 mA	
5 71	4 to 20 mA	
	20 to 0 mA	
	20 to 4 mA	
	0 to 10 V	
	10 to 0 V	
Scaling start	2.00 to 0.00 to 15.00 pH	
Scaling end	0.00 to 16.00 pH	
At calibration	Moving	
	Frozen	
	Safe value	
In case of error	0/4 mA/0 V	
(output signal, of the	20 mA/10 V	
controller in case of error)	Frozen	
	Safety value	
Hold mode	Frozen	
(output signal, of the	Safety value	
controller in Hold mode)	Standard mode	
	0/4 mA/0 V	
	20 mA/10 V	
Safety value	0.0 to 20.0 mA	
Simulation		
SITIUIALION	Off	
Oires detiers and the	On Off	
Simulation value		
	0.0 to 20.0 mA	

Parameter	Selection/value range	New setting
	Factory setting	_
Interface		
Modbus address	1 to 254	
Baud rate	9600	
	19200	
	38400	
Parity	None	
	Even	
	Odd	
Stop bits	1	
	2	
PROFIBUS address	0 - 99	
EEPROM marking	Off	
-	On	
Wash timer		
Cycle time	0.0 to 240.0 hours	
	(0.0 = Wash contact is not active	
Wash time	1 to 60 to 1800 seconds	
Datalogger		
Storage interval	1 to 60 to 300 seconds	
Channels 1 to 4	No signal Main value (standard for channel 1) Not comp. Main value Temperature (standard for channel 2) Option input 1 Option input 1 not compensated Option input 2 Option input 2 not compensated Option input 3 Option input 3 not compensated Math 1 Math 2 Differential signal Flow rate Partial quantity Total quantity Output controller 1 (standard for channel 3) Output controller 2 (standard for channel 4) Setpoint 1 controller 1 Setpoint 2 controller 2	
Date year	Setpoint 2 controller 2 20xx	
Date month	1 to 12	
Date day	1 to 31	
Time hour	0 to 24	
Time minute	0 to 59	
Time second	0 to 59	

Parameter	Selection/value range	New setting
	Factory setting	
Display		
Lighting	On	
	With operation	
Display of measured value	Standard	
	Tendency	
	Bargraph	
	Trend chart	
	Large display	
	3 measured values	
	Time	
Display Top/Center/Bottom	No signal	
	Main value (standard for "Top")	
	Not comp. Main value	
	Temperature(standard for "Center" and	
	"Bottom")	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
	Output controller 1	
	Output controller 2	
	Setpoint 1 controller 1	
	Setpoint 2 controller 1	
	Setpoint 1 controller 2	
	Setpoint 2 controller 2	
Operating timeout	0 to 1 to 10 minutes	
	(0 = operating timeout is turned off)	
Scaling start	-2.00 to 0.00 to 15.00 pH	
Scaling end	0.00 to 16.00 pH	

Parameter	Selection/value range	New setting
	Factory setting	
Signal source	Main value	
	Not comp. Main value	
	Temperature	
	Option input 1	
	Option input 1 not compensated	
	Option input 2	
	Option input 2 not compensated	
	Option input 3	
	Option input 3 not compensated	
	Math 1	
	Math 2	
	Differential signal	
	Flow rate	
	Partial quantity	
	Total quantity	
Temperature unit	℃	
	°F	
LCD inverse	Off	
	On	
Contrast	0 to 10 to 20	

^a Delayed release is automatically deactivated when wiper times are greater than 0 seconds.

19 Index

Numerics

1-point calibration - ammonia 64 1-point calibration - pH 50 2-point calibration 105 2-point calibration - pH 51 3-point calibration - pH 54 3-point calibration . 106

A

Accessories 11 Administrator 35 Asymmetrical connection 112–114

В

Basic setting 35 Binary inputs and outputs States 32

С

Calibration Ammonia, 1-point 64 Ammonia, zero point 64 Antimony 56 **ISFET 56** Logbook 84 pH ISFET 56 pH, 2-point 51 pH, antimony 56 Redox, one-point 59 Redox, zero-point 59 Standard signal 66 Standard signal, options 67 Calibration release 37 Configurable parameters 93 Controller "Higher order" switching functions 86 "Simple" switching functions 86 General information 86 Parameter sets 89 Controller functions 86 Controllers Configuration of "higher order" controllers Setting example, limit monitoring 90 Setting example, pulse length output 91 Customer settings 115

D

Datalogger Special features 95 Date of manufacture 9 Delete 37 Display 24

E Electrical isolation 14

F

Factory settings 115

G

Getting started 42

Η

HOLD mode 40

I

Info Device 34 Hardware 33 Installation position 12 ISFET sensor 19, 114

Κ

Key combinations 29

L

Limit functions 106

Μ

Manual 33 MANUAL mode 37 Analog outputs 40 Binary outputs 39 Controller 38 Deactivation 41 Switching outputs 38 Manual mode overview 33 Menu Customized 30 Min/max values 30–31 Mounting location 12

0

Optional inputs Current values 32 Output 31 Output level display 31

Ρ

Parameter overview 115 Password 2, 35 Principle 25 Principle of operation 29

R

Rapid access 29 Reference signs 6 Reset 2

S

Setting example pH difference measurement 45 pH measurement 43 Setup program 93 Simulation mode 37 Simulation of binary outputs 39 States 32 Sunlight 12 Symmetrical connection 22

Т

Temperature compensation 112

U

User 34 User data 30

W

Warning signs 6 Wash timer 114 Washing contact 114

Ζ

Zero point calibration 105

JUMO GmbH & Co. KG

Street address: Moritz-Juchheim-Straße 1 36039 Fulda, Germany Delivery address: Mackenrodtstraße 14 36039 Fulda, Germany Postal address: 36035 Fulda, Germany Phone: +49 661 6003-0 Fax: +49 661 6003-607 E-mail: mail@jumo.net Internet: www.jumo.net

JUMO Instrument Co. Ltd.

JUMO House Temple Bank, Riverway Harlow - Essex CM20 2DY, UK Phone: +44 1279 63 55 33 Fax: +44 1279 63 52 62 E-mail: sales@jumo.co.uk Internet: www.jumo.co.uk

JUMO Process Control, Inc.

6733 Myers Road East Syracuse, NY 13057, USA Phone: 315-437-5866 1-800-554-5866 Fax: 315-437-5860 E-mail: info.us@jumo.net Internet: www.jumousa.com